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CONTENTS 1

These lectures notes are reproducing most of the 6 first Chapters of Hazan’s book

Introduction to Online Convex Optimization

https://sites.google.com/view/intro-oco/

with small variations, especially in Section 5. Online Convex Optimization is the study
of recursive algorithm and their theoretical guarantees called regret bounds. Due to the
effectiveness of some algorithms of this vast class for training deep neural networks there is
an excellent recent literature. Besides Hazan (2019), there is also the early Shalev-Shwartz
et al. (2011) and the very recent Orabona (2019). Lattimore and Szepesvári (2020) is the
reference for the analysis of bandit problems.

All the illustrations of these notes are maid on the MNIST handwritten digit dataset
from

http://yann.lecun.com/exdb/mnist/

tuned into a classification problem recognizing the digit 0. The performances of linear
SVM, trained on 60000 digits with different algorithms, are compared in terms of their
accuracy on the test set of 10000 digits. The seed is fixed the same for all stochastic
algorithms and all the experiments are ran on the R language from CRAN. The code is
available on

http://wintenberger.fr/ens.html
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Chapter 1
Basic concepts in Convex Optimization
(CO)

In this chapter we fix some notation form the usual CO problem, cf Convex Optimization,
Boyd and Vandenberghe (2004), the more recent introductory notes Bubeck (2014) and
Remise à niveau. Calcul différentiel et optimisation, the lecture notes of the course of
Claire Boyer and Maxime Sangnier.

1.1 Basic definition and setup

We are interested in analyzing the performances of algorithms solving the CO problem.
The key notion is convexity: Convexity of a set K

αx+ (1− α)y ∈ K, x, y ∈ K, α ∈ (0, 1) ,

and convexity of a function f : K 7→ R

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y) x, y ∈ K .

In all the sequel K will be assumed closed and bounded with diameter D

‖x− y‖ ≤ D , x, y ∈ K .

Here the norm ‖ · ‖ = ‖ · ‖2 is the Euclidean one over Rd, d ≥ 1, the other `p-norms
being denoted ‖ · ‖p. On a closed and bounded convex set a convex function admits a (non
necessarily unique) minimum.

Definition 1 (CO problem). A CO problem (f,K) is to approximate the minimum of f
over K

min
x∈K

f(x) ,

or, alternatively, to approximate one of the minimizers

x∗ ∈ arg min
x∈K

f(x) = {x ∈ K; f(x) = min
x∈K

f(x)} .

Another way of defining a CO problem is via its (sub-)gradient. A sub-gradient is a
vector ∇f(x) ∈ Rd satisfying the relation

f(y) ≥ f(x) +∇f(x)T (y − x) , x, y ∈ Dom(f) , (1.1)

5



6 CHAPTER 1. BASIC CONCEPTS IN CONVEX OPTIMIZATION (CO)

where the domainDom(f) = {x ∈ Rd : f(x) <∞} of f is convex. For simplicity we assume
that the sub-gradient is unique ∇f(x) at any point and x ∈ K. We call ∇f(x) the gradient
at x ∈ K. If the minimizer is in

◦
K= {x ∈ K : a neighbourhood of x belongs to K}, the

interior of K, then
x∗ ∈ arg min

x∈K
f(x)∩

◦
K⇐⇒ ∇f(x∗) = 0 .

In generality they might be a problem on the boundary of K.

Theorem 1 (simple Karush-Kuhn-Tucker (KKT)). For every y ∈ K we have

∇f(x∗)T (y − x∗) ≥ 0 .

Proof. Assume that for some y ∈ K we have ∇f(x∗)T (y − x∗) < 0. Then consider g(t) =
f(x∗ + t(y − x∗)) so that g′(0) = ∇f(x∗)T (y − x∗) < 0. In particular for t > 0 sufficiently
small we have g(t) < g(0), thus z = x∗+t(y−x∗) = ty+(1−t)x∗ ∈ K satisfies f(z) < f(x∗)
in contradiction with the definition of x∗.

It means that the gradient at the minimum x∗ is directed toward the interior of the
constrained set. We will use the projection ΠK(y) = arg minx∈K ‖y − x‖ the (convex)
projection of y on K. It is defined for the Euclidean norm and will be extended to other
norms. As it is a CO problem, the projection is well defined but may be non explicit and
is yet a hot topic in CO, see Grünewälder (2017)!

Exercise 1. Show that ΠK(x) has an explicit solution x/‖x‖ if K = B2(1) = B(1) the
unitary Euclidian ball and x /∈ K.

Theorem 2 (Pythagorean). For any z ∈ K we have ‖y−z‖2 ≥ ‖ΠK(y)−z‖2+‖ΠK(y)−y‖2.

Proof. We have he CO problem ΠK(y) = arg minx∈K f(x) with f(x) = ‖x− y‖2 thus

‖y − z‖2 − ‖ΠK(y)− z‖2 = ‖y‖2 − ‖ΠK(y)‖2 + 2(ΠK(y)− y)T z

= ‖y‖2 − ‖ΠK(y)‖2 +∇f(ΠK(y))T z

≥ ‖y‖2 − ‖ΠK(y)‖2 +∇f(ΠK(y))TΠK(y)

≥ ‖y‖2 − ‖ΠK(y)‖2 + 2(ΠK(y)− y)TΠK(y)

≥ ‖y‖2 + ‖ΠK(y)‖2 − 2yTΠK(y)

≥ ‖y −ΠK(y)‖2 ≥ 0 .

We used the simple KKT theorem to derive the inequality.

Note that the above notions and theorem extends easily to any weighted quadratic
forms

‖x‖2W = xTWx , W � 0 .

Here W � 0 means that W is a definite positive matrix of weights.
We assume the sub-gradients are bounded, there exists some G > 0 so that ‖∇f(x)‖ ≤

G for all x ∈ K. Then f is Lipschitz (and continuous) |f(y)− f(x)| ≤ G‖y − x‖, x, y ∈ K.
We may assume more on the curvature of the function f , namely

• f is α-strongly convex if

f(y) ≥ f(x) +∇f(x)T (y − x) +
α

2
‖y − x‖2 , x, y ∈ Dom(f) ,



1.2. GRADIENT DESCENT ALGORITHM (GD) 7

• f is β-smooth if

f(y) ≤ f(x) +∇f(x)T (y − x) +
β

2
‖y − x‖2 , x, y ∈ Dom(f) .

Exercise 2. Show that β-smoothness follows from the fact that the gradient ∇f is β-
Lipschitz

Remark 1. If the function f is twice differentiable we denote ∇2f(x) the Hessian d × d
matrix at the point x ∈ K and

• f is α strongly convex iff ∇2f(x) � αId (A � 0 meaning that A is a symmetric
semi-definite positive matrix),

• f is β smooth iff ∇2f(x) � βId.

If f is α-strongly convex and β-smooth then f is γ-well-conditioned with γ = α/β ≤ 1.
A typical example is the quadratic loss f(x) = ‖x‖2 which is γ = 1 well-conditioned as

α = β = 2.

1.2 Gradient Descent algorithm (GD)

In view of (1.1), minimizing f from a given point x ∈ K is approximated by the CO problem
on the surrogate loss, ie a simple approximation of the function f(y) ≈ f(x)+∇f(x)T (y−x)
around x. The surrogate loss function y → f(x) +∇f(x)T (y − x) is linear and one takes
the step y from x in the opposite of the direction x − η∇f(x) of the gradient so that
∇f(x)T (y−x) < 0. The role of η is to control the step-size, balancing between the gain in
the surrogate CO problem (large η) and the quality of the approximation of the surrogate
loss (small η).
Algorithm 1: Gradient Descent
Parameters: Epoch T , step-sizes (ηt).
Initialization: Initial point x1 ∈ K.
For each iteration t = 1, . . . , T :
Iteration: Update

yt+1 = xt − ηt∇f(xt),

xt+1 = ΠK(yt+1) .

Return xT+1

Let ht = f(xt)−f(x∗) be the accuracy of the algorithm at step t ≥ 1, we have different
rates depending on the curvature properties of f and the tuning of the gradient step:

• γ-well-conditioned, ηt = 1/β, hT = O(e−γT ),

• β-smooth, ηt = 1/β, hT = O(β/T ),

• α-strongly convex, ηt = 1/(αT ), hT = O(1/(αT )),

• convex, ηt = 1/
√
T , hT = O(1/

√
T ) .

The last two rates are optimal but the two first ones can be accelerated. Step sizes ηt and
the rates depend on the curvature properties of the CO problem and the epoch T . The
more the curvature of f is controlled the easier the CO problem (f,K).
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Proof of the γ-well-conditioned case. We show first the relation ht ≤ ht−1(1 − α/β). By
β-smoothness, we have

ht − ht−1 = f(xt)− f(xt−1) ≤ ∇f(xt−1)T (xt − xt−1) +
β

2
‖xt − xt−1‖2 .

We consider the upper-bound as a surrogate loss that we optimize in xt. We obtain

xt = arg min
x∈K

{
∇f(xt−1)T (x−xt−1)+

β

2
‖x−xt−1‖2

}
= arg min

x∈K

∥∥x−(xt−1−
2

β
∇f(xt−1)

)∥∥2

which coincides with the desired gradient step xt = ΠK(xt−1 − 1/β∇f(xt−1)) and

ht − ht−1 ≤ −
1

β
‖∇f(xt−1))‖2 +

β

2

∥∥∥ 1

β
∇f(xt−1))

∥∥∥2

≤ − 1

2β
‖∇f(xt−1))‖2 .

By strong convexity, we have

f(y) ≥ f(x) +∇f(x)T (y − x) +
α

2
‖x− y‖2

≥ min
z∈Rd
{f(z) +∇f(x)T (z − x) +

α

2
‖x− z‖2}

≥ f(x)− 1

2α
‖∇f(x)‖2

because the minimiser is z∗ = x− 1
α∇f(x). In particular taking x = xt and y = x∗ we get

‖∇f(xt)‖2 ≥ 2α(f(xy)− f(x∗)) = 2αht .

Combining both inequalities we obtain

ht − ht−1 ≤ −
1

2β
‖∇f(xt−1))‖2

≤ −α
β
ht−1 .

Thus a recursive argument yields

hT ≤ hT−1(1− α/β) ≤ hT−1e
−γ ≤ · · · ≤ h1e

−γ(T−1)

and the result follows.

The other rates of convergence can be recovered from this ideal case by regularization
or randomization:

Definition 2. Regularizing the CO problem (f,K) consists in adjoining a regularization
function R strongly convex on K and twice continuously differentiable so that (f + R,K)
becomes an easier CO problem.

Consider the regularized problem g(x) = f(x) +α/2‖x− x1‖2 when f is convex. Then
g is α- strongly convex so that the CO problem gets easier and the error of the GD problem
hgT = g(xT ) − g(x∗g) smaller. However the minimizer of the CO problem changes and we
denote it x∗g. Assuming that x1 ∈ K we still have

f(xT )− f(x∗) = g(xT )− g(x∗) + α/2(‖x∗ − x1‖2 − ‖xT − x1‖2)

≤ g(xT )− g(x∗g) + α/2D2 (g(x∗g) ≤ g(x∗))

≤ hgt + αD2/2 .
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Exercise 3. If f is convex and β-smooth show that g = f+R with R(x) = α/2‖x−x1‖2 is γ
well conditioned. Deduce that hT = O(β log T/T ) choosing α carefully in the unconstrained
CO problem.

It is also possible to smooth the loss function thanks to randomization. Consider
f̂δ(x) = EU∼U(B(1))[f(x + δU)] where U(B(1)) is the uniform distribution on the unit
Euclidean ball. We have

Proposition 1. The randomized version f̂δ is dG/δ-smooth and a δG uniform approxi-
mation of f :

|f̂δ(x)− f(x)| ≤ δG, x ∈ K.

Proof. We use Stokes’ theorem which is a multi-dimensional extension of the relation∫ 1

−1
f ′(u)du = f(1)− f(−1) = (+1)f(+1) + (−1)f(−1) .

Theorem 3 (Stokes’ theorem). For any continuously differentiable g we have∫
B(1)
∇g(u)du =

∫
S(1)

g(v)vdv

where B(1) and S(1) are the unit Euclidean ball and sphere of Rd, respectively.

Since d|B(1)| = |S(1)| where | · | denotes the Lebesgue measure (in Rd and Rd−1

respectively) we obtain∫
B(1)
∇f(x+ δu)

du

|B(1)|
=
d

δ

∫
S(1)

f(x+ δv)v
dv

|S(1)|
.

Then we have, interchanging derivative and expectation by domination and unicity of ∇f ,

‖∇f̂δ(x)−∇f̂δ(y)‖ = ‖EU∼U(B(1))[∇f(x+ δU)]− EU∼U(B(1))[∇f(y + δU)]‖

=
d

δ
‖EV∼U(S(1))[f(x+ δV )V ]− EV∼U(S(1))[f(y + δV )V ]‖

≤ d

δ
EV∼U(S(1))[‖(f(x+ δV )− f(y + δV ))V ‖]

≤ d

δ
EV∼U(S(1))[|(f(x+ δV )− f(y + δV )|‖V ‖]

≤ d

δ
G‖x− y‖EV∼U(S(1))[‖V ‖]

≤ d

δ
G‖x− y‖

and the β-smoothness follows. The approximation bound is easily computed using again
Jensen’s inequality and the Lipschitz property of f :

|f̂δ(x)− f(x)| = |EU∼U(B(1))[f(x+ δU)− f(x)]| ≤ EU∼U(B(1))[|f(x+ δU)− f(x)|]
≤ GEU∼U(B(1))[‖δU‖] ≤ δG .
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Consider the smoothed unconstrained problem (f̂δ,Rd). One deduces that

f(xT )− f(x∗) ≤ f̂δ(xT )− f̂δ(x∗) + 2δG

≤ f̂δ(xT )− f̂δ(x∗f̂δ) + 2δG (f̂δ(x
∗
f̂δ

) ≤ f̂δ(x∗))

≤ hf̂δt + 2δG .

Exercise 4. If f is α strongly convex show that f̂δ is γ well conditioned. Deduce that
hT = O(G2d log T/(αT )) for δ well chosen in the unconstrained CO problem.

Exercise 5. Show that the rate of any CO problem is at most of the order O(GD
√
d log T/T ).

1.3 Applications

1.3.1 Unconstrained CO problem

Consider the supervised classification problem of 2 classes {+1, 1} where we observe labels
bi, 1 ≤ i ≤ n, bi ∈ {+1, 1} together with explanatory variables ai ∈ Rd.

Examples:

• Natural Language Processing (NLP) for spam classification: ai encodes the list of
words in an email, d is the number of words in the language, ai,j = 1 if the jth word
appears in the ith mail, = 0 else.

• MNIST: Handwritten digit database n = 60000 from ai is a 28× 28 grayscale image,
d = 784 and one can consider two classes, 0 vs other digits (bi = 0 if the digit is 0,
else −1).

Definition 3. Linear Support Vector Machine (SVM) are classifiers of the form sign(xTai)
an hyperplane x ∈ Rd.

One wants to find the minimizer x of the accuracy

P(sign(xTa) 6= b) ≈ 1

n′

n+n′∑
i=n+1

I1sign(xT ai)6=bi

over a test set (ai, bi)n+1≤i≤n+n′ .
Because of the lack of convexity of the 0/1 loss, the hard-margin problem of optimizing

1

n

n∑
i=1

I1sign(xT ai)6=bi

is non-polynomial. A common way of bypassing the issue is to relax the optimization
problem to turn it into a CO problem.

Definition 4. The hinge loss

`a,b(x) = hinge(bxTa) = max(0, 1− bxTa)

is a convex version of the 0− 1 loss I1sign(xT a)6=b = I1bxT a<0.

Remark that the hinge loss is a convex function but not strongly convex with potentially
multiple minimizers. We consider instead the regularized CO problem called the soft-
margin problem

f(x) =
1

n

n∑
i=1

hinge(bxTai) +
λ

2
‖x‖2.

It is a strongly convex CO.
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1.3.2 `1-ball constrained CO as dual of the LASSO

Consider f(x) = 1
n

∑n
i=1 `i(x) to be minimized on the trained sample (`1, . . . , `n) assumed

to be iid convex functions over Rd. The aim is to minimize the unobserved risk E[`(x)].
One can face generalization issues such as overfitting in high dimension.

Definition 5. The information criteria (AIC, BIC) are penalized f of the form

f(x) + λ‖x‖0 = f(x) + θ

d∑
i=1

I1xi 6=0 , θ > 0, x ∈ Rd.

Due to the lack of convexity, it is a non-polynomial optimization problem. It is relaxed
using the convex `1-norm instead of ‖ · ‖0.

Definition 6. The LASSO problem is a penalized unconstrained CO problem of the form

f(x) + θ‖x‖1 , θ > 0, x ∈ Rd .

LASSO is an unconstrained CO problem. Using a Langrage dual argument one can
turn it into a constrained CO problem.

Proposition 2. If x∗ is the minimizer of LASSO it is also the minimizer of

min
‖x‖1≤τ

f(x) , (1.2)

τ = ‖x∗‖1 .Moreover if x∗ is a minimizer of (1.2) then there exists θ∗ such that it minimizes
LASSO.

Proof. Assume x∗ is the minimizer of the LASSO problem then for any ‖x‖1 ≤ τ we have

f(x) ≥ f(x∗) + θ(‖x∗‖1 − ‖x‖1)

≥ f(x∗) + θ(‖x∗‖1 − τ)

≥ f(x∗)

when τ = ‖x∗‖1. The second assertion requires the general KKT theorem

Theorem 4 (general KKT). If (x∗, θ∗) is a saddle point of the Lagrangian L(x, θ) =
f(x)+θg(x) (minimum over x ∈ Rd, maximum over x ≥ 0) then x∗ solves the CO problem
(f, {x ∈ Rd : g(x) ≤ 0}). If g is convex and there exists x0 such that g(x0) < 0, then x∗

solving the CO problem (f, {x ∈ Rd : g(x) ≤ 0}) is associated to θ∗ such that (x∗, θ∗) is a
saddle point of L.

Since g(x) = ‖x‖1 − τ is convex and g(0) < 0, a minimizer x∗ of (1.2) is associated to
θ∗ such that (x∗, θ∗) is a saddle point of L. In particular we have that x∗ minimize L(·, θ∗),
i.e.

f(x) + θ(‖x‖1 − τ) ≥ f(x∗) + θ(‖x∗‖1 − τ) , x ∈ Rd ,

which is equivalent to x∗ solving the LASSO problem.

We implement (projected) GD on MNIST with ηt = 1/(λt) with regularization param-
eter λ = 1/3. The projection is on B1(100) = {x ∈ Rd; ‖x‖1 ≤ 100}. Each iteration costs
O(nd + P ) as it requires n gradients of dimension d and the projection on an `1-ball of
complexity P .
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We notice that the accuracy is better for the projected version with a faster convergence
rate but then their accuracies are deteriorating. It is due to overfitting and motivates early
stopping methods in such regularized CO problem.

1.3.3 Explicit projection on B1(z)

We consider the CO problem ΠB1(z)(x) = miny∈B1(z) ‖y − x‖. One cannot use GD since
then a projection step is required... Luckily there exists an explicit solution. Consider the
simpler projection on the simplex ΠΛ(x) where Λ = {w ∈ Rd+;

∑d
i=1wi = 1} for x such

that xi ≥ 0 and ‖x‖1 ≥ 1. We have the Lagrangian function

L(w, θ, ζ) =
1

2
‖w − x‖2 + θ

( d∑
i=1

wi − 1
)
−

d∑
i=1

ζiwi

with parameters w ∈ Rd, θ ∈ R and ζ ∈ Rd+. We compute its gradient

∇L(w, θ, ζ) =

w − x+ θ I1− ζ∑d
i=1wi − 1
−w

 , I1 = (1, . . . , 1)T .

Thus simple KKT applied to the constrained maximization problem in ξ provides
w∗ = x− θ∗ I1 + ζ∗ ,∑d

i=1w
∗
i = 1

w∗i = 0 or w∗i > 0 and ζ∗i = 0 .

To sum up we obtain the soft-thresholding w∗i = SoftThreshold(xi, θ
∗) = max(xi − θ∗, 0).

Consider g(θ) =
∑d

i=1(xi − θ)+. It is a non increasing piecewise linear function of θ
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with range [0, ‖x‖1] over its domain (0, x(1)] where x(d) ≤ · · · ≤ x(1) are the sorted coor-
dinates. The break points are x(d), · · · , x(1)and the consecutive slopes −d, . . . ,−1. Since
1 ∈ (0, ‖x‖1] there exists d0 ∈ {1, . . . , d} such that g(x(j)) < 1 for all j ≤ d0 and g(x(j)) ≥ 1

for all j > d0. Since g(x(j)) =
∑j−1

i=1 (x(i) − x(j)) we obtain that

d0 = max
{

1 ≤ j ≤ d :

j−1∑
i=1

(
x(i) − x(j)

)
< 1
}

is the number of non-thresholded coordinates in w∗. Moreover, since θ∗ belongs to the
interval [x(d0), x(d0−1)) we have

g(θ) =

d0∑
i=1

(xi − θ)

and one deduces the expression of θ∗ by inverting this linear function.
Algorithm 2: Projection On the Simplex ΠΛ

Input: x ∈ Rd.
If x ∈ Λ
Then Return x.
Else
Sort x(1) ≥ · · · · · · ≥ x(d)

Find d0 = max
{

1 ≤ j ≤ d :
∑j−1

i=1

(
x(i) − x(j)

)
< 1
}

Define θ∗ = 1
d0

(∑d0
j=1 x(j) − 1

)
Return w∗ = SoftThreshold(x, θ∗).

The projection over the `1-ball follows easily form the one on the simplex by using
symmetric arguments over the 2d-orthants of Rd which are determined by the sign vector
sign(x) = (sign(x1), . . . , sign(xd)).

Algorithm 3: Projection On `1-ball ΠB1(z)

Input: x ∈ Rd.
If x ∈ B1(z)
Then Return x.
Else
w∗ = ΠΛ(|x|/z)
Return y = sign(x)w∗.

The computational cost of the projection is P = O(d log(d)) on average, as the algo-
rithm Quicksort used to sort the coordinates.
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Part II

Online Convex Optimization
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Chapter 2
Online Gradient Descent for Online
Convex Optimization (OCO)

We extend the previous CO setting to the the OCO problem and analyses the online
gradient descent.

2.1 The setting

We consider now a recursive setting. At each iteration t, the algorithm predicts xt and
then the loss function ft is revealed, potentially varying through time. Then the algorithm
incurs the loss ft(xt) and its aim is to minimize its regret at any horizon T

RegretT =

T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x) , T ≥ 1 ,

its cumulative losses relative to the best strategy frozen through time.

Definition 7. The full adversarial setting corresponds to ft chosen by an adversary as
the worst possible loss function given the past predictions xt, xt−1, . . ..

Example 1 (Rock, Paper, Scissor). Consider the game with the following cost table where
0 denotes a draw, 1 denotes that the row player wins, and 1 denotes a column player victory:

Adversary
Algorithm Rock Paper Scissor

Rock 0 -1 1
Paper 1 0 -1
Scissor -1 1 0

= A

where A is a 3×3 cost matrix. We consider the set of the moves K = {Rock,Paper,Scissor}
which is discrete (not convex). One randomizes the strategy by considering x ∈ Λ, the
simplex {x ∈ R3

+;x1 + x2 + x3 = 1} so that the strategy is P(Rock) = x1. . .Consider
first the full adversarial setting; the algorithm predicts a randomized strategy xt and plays
Rock, Paper and Scissor it = (0, 1, 2) according to the distribution xt. Then the adversary
chooses the worst move according to xt (and not the sample move that she cannot predict).

17
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We obtain ft(xt) = maxy∈Λ y
TAxt. It is a convex function of xt since

max
y∈Λ

yTA(αx1 + (1− α)x2) = max
y∈Λ

(αyTAx1 + (1− α)yTAx2)

≤ αmax
y∈Λ

yTAx1 + (1− α) max
y∈Λ

yTAx2 .

It is a full adversarial OCO called the zero-sum game.

Of course OCO also embeds much more gentle nature than the adversarial settings:

Proposition 3. If ft = f is constant then OCO is equivalent to CO and the accuracy of
the averaging xT = 1

T

∑T
t=1 xt satisfies

hft = f(xT )− f(x∗) ≤ 1

T

T∑
t=1

f(xt)− f(x∗) =
RegretT
T

.

Definition 8. Stochastic OCO is the setting where (ft) is an independent random function
sequence with constant mean called the risk R = E[f1].

Proposition 4. The accuracy of the averaging on the risk R = E[f1] satisfies, on average,

E[hRT ] ≤ E
[RegretT

T

]
.

Proof. We have

E[hRT ] = E[R(xT )−R(x∗)] ≤ E
[ 1

T

T∑
t=1

R(xt)−R(x∗)
]

≤ E
[ 1

T

T∑
t=1

E[ft](xt)− E[ft](x
∗)
]

≤ E
[ 1

T

T∑
t=1

E[ft(xt)− ft(x∗) | Ft−1]
]

≤ E
[RegretT

T

]
,

where one has to introduce the natural filtration Ft = σ(ft, ft−1, . . . , f1) and uses the fact
that xt is Ft−1-measurable.

The aim of OCO is to designed algorithms with the best possible regret and at least
sub-linear regrets

RegretT = o(T ) .

In stochastic OCO the aim is to get

E[RegretT ] = o(T ) .

2.2 Failure of Follow The Leader (FTL)

We call FTL the strategy from CO: at each t the algorithm predicts

xt = x∗t−1 ∈ arg min
x∈K

t−1∑
k=1

fk(x) .
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This strategy fails in the OCO setting. Consider K = [−1, 1], f1(x) = x/2 and

fk(x) =

{
−x if k is even
x else.

Thus
t−1∑
k=1

fk(x) =

{
−x/2 if t is odd
x/2 else.

so that FTL predicts xt = −1 if t is odd and = 1 else and occurs ft(xt) = 1. Starting at
x1 = 0 the regret is

RegretT =
T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x) = (T − 1) + 1/2 = T − 1/2 .

Note that the regret of the constant algorithm xt = 0 is 1/2. More generally, every constant
algorithm admits a bounded regret whereas FTL, which fluctuates from −1 to +1 at each
step, admits a linear regret. FTL fails to solve this OCO problem as it overfits the current
total loss to predicts the next one.

2.3 Online Gradient Descent (OGD)

This online version of GD has been introduced by Zinkevich (2003).
Algorithm 4: Online Gradient Descent
Parameters: Step-sizes (ηt).
Initialization: Initial prediction x1 ∈ K.
For each recursion t ≥ 1:
Predict: xt
Incur: ft(xt)
Observe: ∇ft(xt)
Recursion: Update

yt+1 = xt − ηt∇ft(xt),
xt+1 = ΠK(yt+1) .

OGD succeeds where FTL fails and more generally:

Theorem 5. OGD with ηt = D
G
√
t
satisfies

RegretT ≤
3

2
GD
√
T

Proof. We start with the gradient trick ft(xt)− ft(x∗) ≤ ∇ft(xt)(xt−x∗), t ≥ 1. Thus we
will estimate the linear regret

T∑
t=1

∇ft(xt)(xt − x∗)

Using the updates, we have

‖xt+1 − x∗‖2 ≤ ‖ΠK(xt − ηt∇ft(xt))− x∗‖2

≤ ‖xt − ηt∇ft(xt)− x∗‖2

≤ ‖xt − x∗‖2 + η2
t ‖∇ft(xt)‖2 − 2ηt∇ft(xt)T (xt − x∗) .
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We get, whatever is x∗,

2ηt∇ft(xt)T (xt − x∗) ≤ ‖xt − x∗‖2 − ‖xt+1 − x∗‖2 + η2
tG

2 . (2.1)

One deduces that (1/η0 = 0 by convention and ‖xt+1 − x∗‖2 ≥ 0)

2
T∑
t=1

∇ft(xt)T (xt − x∗) ≤
T∑
t=1

‖xt − x∗‖2 − ‖xt+1 − x∗‖2

ηt
+G2

T∑
t=1

ηt

≤
T∑
t=1

‖xt − x∗‖2
( 1

ηt
− 1

ηt−1

)
+G2

T∑
t=1

ηt

≤ D2
T∑
t=1

( 1

ηt
− 1

ηt−1

)
+G2

T∑
t=1

ηt

≤ D2

ηT
+G2

T∑
t=1

ηt

≤ 3DG
√
T .

We use that
∑T

t=1 ηt ≤ 2
√
T .

Remark 2. Note that if η is constant then a similar argument yields the upper bound

1

2

(‖x1 − x∗‖2

η
+ η

T∑
t=1

‖∇ft(xt)‖2
)

which is minimized for

η =
‖x1 − x∗‖√∑T
t=1 ‖∇ft(xt)‖2

and get the optimal regret bound

D

√√√√ T∑
t=1

‖∇ft(xt)‖2 .

However this bound is not achievable since the learning rate η is tuned knowing the gradients
∇ft(xt), 1 ≤ y ≤ T , which are not observed.

Exercise 6. Compute the regret in the OCO where FTL fails. Interpret.

Moreover in favorable cases one can accelerate OGD:

Definition 9 (Strongly convex OCO). We consider the OCO problem over K and we
assume the existence of α > 0 so that the ft are α-strongly convex.

OGD satisfies an optimal regret bound O(log T ) by modifying the step-sizes (learning
rates) accordingly:

Theorem 6. Assume the strongly convex OCO problem, then OGD with step sizes ηt =
1/(αt) satisfies

Regrett ≤
G2

2α
(1 + log T ) .
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Proof. We write

RegretT =
T∑
t=1

ft(xt)− ft(x∗)

so that by α-strong convexity we get the improved gradient trick

2(ft(xt)− ft(x∗)) ≤ 2∇ft(xt)T (xt − x∗)− α‖xt − x∗‖2 .

Using (2.1), namely

2ηt∇ft(xt)T (xt − x∗) ≤ ‖xt − x∗‖2 − ‖xt+1 − x∗‖2 + η2
tG

2

we get

2(ft(xt)− ft(x∗T )) ≤ ‖xt − x
∗‖2 − ‖xt+1 − x∗‖2

ηt
− α‖xt − x∗‖2 + ηtG

2

≤ α(t− 1)‖xt − x∗‖2 − αt‖xt+1 − x∗‖2 +
G2

αt
.

Thus one gets a telescoping argument when bounding the regret

2RegretT =
T∑
t=1

2(ft(xt)− ft(x∗))

≤
T∑
t=1

α(t− 1)‖xt − x∗‖2 − αt‖xt+1 − x∗‖2 +
G2

αt

≤ −αT‖xT+1 − x∗‖2 +
G2

α
(1 + log T )

since
∑T

t=1 t
−1 ≤ 1 + log T . The desired result follows.

Note that the regret bounds for OGD in the convex and strongly convex OCO problem
are optimal. We will see that the strongly convex case is too restrictive in the OCO setting
and we will prefer the more general exp-concave one.

2.4 Applications

2.4.1 Stochastic Gradient Descent (SGD)

Consider the CO problem (f,K). Instead of using ∇f we use a noisy version of the gradient
∇̂f so that E[∇̂f(x)] = ∇f(x) and E[‖∇̂f(x)‖2] ≤ G2, independent of anything else. The
approximation ∇̂f is unbiased with bounded variance and the setting is called Stochastic
Optimisation (SO).

Example 2. Consider the unconstrained CO problem (f,Rd) and the smoothed version
f̂δ(x) = E[f(x + δU)]. Then (d/δ)f(x + δV )V is an unbiased estimator of ∇f̂δ(x) due
to Stockes’ theorem. Remark we have E[‖∇f̂δ‖2] ≤ (d/δ)2E[‖f(x + δV )V ‖2] = O((dG)2).
The bound on the gradients of the smoothed version is impacted by the dimension. It is not
efficient in the OCO problem we will prefer the alternative randomization below.
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Example 3. Consider the CO problem (f,K) where f(x) = 1
n

∑n
i=1 `i(x) as in the SVM

classification. Then each step of a GD costs O(nd) since it requires the query of n gradients
∇`i. Instead sample randomly uniformly I ∈ {1, . . . , n} and use ∇̂f = ∇`I . We have

E[∇̂f(x)] =
n∑
i=1

∇`i(x)P(i = n) =
1

n

n∑
i=1

∇`i(x) = ∇f(x)

and

E[‖∇̂f(x)‖2] =

n∑
i=1

‖∇`i(x)‖2P(i = n) =
1

n

n∑
i=1

‖∇`i(x)‖2 ≤ G2

as soon as ‖∇`i(x)‖ ≤ G. Each step of a Stochastic GD (SGD) on ∇`I costs O(d).

Remark that by Jensen’s inequality we also have ‖∇f‖2 ≤ E[‖∇̂f(x)‖2] in the example
above.

Proposition 5. Any SO problem using iid unbiased approximations ∇̂ft at each round t
reduces to a stochastic OCO problem by considering ∇ft(xt) = ∇̂ft(xt).

Proof. A SO problem requires that the approximations ∇̂ft are all unbiased and indepen-
dent and the optimizer introduces the randomness and chooses the distribution of ∇̂ft. In
the stochastic OCO problem it is the nature which is random and chooses the distribution
of ft with mean R = E[f1] and independent. Forgetting that the distribution is chosen
by the optimizer, an algorithm robust to any choice of distribution will have good accu-
racy on the risk R in the stochastic OCO problem. It implies the same accuracy bound in
expectation on the deterministic function f = Rwhatever the optimizer chooses as ∇̂ft.

Based on this equivalence and on Proposition 4, SGD is a stochastic gradient descent
together with an averaging step.
Algorithm 5: Stochastic Gradient Descent, Robbins and Monro (1951)
Parameters: Epoch T , step-sizes (ηt).
Initialization: Initial point x1 ∈ K.
For each iteration t = 1, . . . , T :
Iteration: Sample ∇̂f t independently of the rest.

Update

yt+1 =xt − ηt∇̂ft(xt),
xt+1 =ΠK(yt+1) .

Return: xT+1 =
1

T + 1

T+1∑
t=1

xt

The SGD is an iterative algorithm that can be studied via the stochastic OCO setting.

Theorem 7. SGD algorithm applied to the CO problem (f,K) with ηt = D/(G
√
t) have

an accuracy satisfying, on average,

E[hRT ] ≤ 3

2

GD√
T
.

SGD algorithm applied to α-strongly CO problem (f,K) with ηt = 1/(αt) have an accuracy
satisfying, on average,

E[hRT ] ≤ G2

2α

1 + log T

T
.
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The original CO setting is deterministic, the randomness comes from the sample of the
approximations ∇̂f at each iteration. The expectation holds on this randomness.

The results on SGD follows from the regret bounds for OCO together with the online
to batch conversion provided in Proposition 4.

The bounds are optimal, up to a log term. We gain in term of complexity; assume we
are interested in an average accuracy of order ε > 0 in the strongly convex CO problem
(f,K). GD and SGD would require both T = O(ε−1) iterations. However the cost of
each iteration is O(nd) and O(d) for GD and SGD, respectively, ending to a total cost
of O(ndε−1) and O(dε−1), respectively. When n is large SGD is much more efficient on
average!

2.4.2 Soft margin problem for linear SVM

Recall the soft margin problem which is a strongly convex CO problem with

f =
1

n

n∑
i=1

`ai,bi(x) +
λ

2
‖x‖2

where `a,b(x) = max(0, 1− bxTa).

Sampling I uniformly over {1, . . . , n} one gets the approximation

∇̂fI(x) = ∇`aI ,bI (x) + λx

which is unbiased. Since the learning rate is tuned as 1/(λt) we get the SGD for solving
the soft margin problem

Algorithm 6: SGD for linear SVM.
Parameters: Epoch T , radius z > 0, regularization parameter λ > 0
Initialization: Initial point x1 = 0.
Sample uniformly iid: (It)1≤t≤T from {1 ≤ i ≤ n}
For each iteration t = 1, . . . , T :
Iteration: Update

yt+1 = (1− 1/t)xt −
∇`aIt ,bIt (xt)

λt
,

xt+1 = ΠB1(z)(yt+1) .

Return: xT+1 =
1

T + 1

T+1∑
t=1

xt

The accuracy of the algorithm is on average O(1/T ) neglecting log terms. Implementa-
tion of (projected) SGD on MNIST with regularization parameter λ = 1/3 and projection
on B1(100) = {x ∈ Rd; ‖x‖1 ≤ 100}, each iteration costs O(d) and the relative speed
1/1000 compared to GD. The
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Chapter 3
Online Regularization

3.1 Online regularization

We develop a general strategy for designing efficient OCO algorithms. The basic idea is to
regularize FTL online so that it does not change too abruptly. Variants of OGD that fall
in this class are Regularized FTL algorithms.

Let R be a strongly convex regularization function twice continuously differentiable on
K. We replace the instance of FTL

x∗t = arg min
x∈K

t∑
k=1

fk(x)

with xt+1 such as

xt+1 = arg min
x∈K

{ t∑
k=1

∇fk(xk)Tx+
1

η
R(x)

}
.

The explanation consists in two steps; the first one is to change the cumulative loss up to
t with a surrogate loss thanks to the gradient trick:

t∑
k=1

fk(x)−
t∑

k=1

fk(x
∗) ≤

t∑
k=1

∇fk(x)T (x− x∗) .

and replacing the unobserved
∑t

k=1∇fk(x) with approximations
∑t

k=1∇fk(xk). The ob-
tained surrogate loss is linear

t∑
k=1

∇fk(xk)T (x− x∗) =

t∑
k=1

∇fk(xk)Tx+ cst. .

The second step consists in regularizing this simple linear (convex) loss

t∑
k=1

∇fk(xk)Tx+
1

η
R(x) .

Doing so, we aim at obtaining an explicit formula for RFTL xt+1 (use of a simple surrogate

25
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loss) and a more stable (regularized) version of FTL. We obtain

Algorithm 7: Regularized Follow The Leader, Shalev-Shwartz and Singer (2007)
Parameters: Regularization function R, step-size η > 0.
Initialization: Initial prediction x1 ∈ K.
For each recursion t ≥ 1:
Predict: xt
Incur: ft(xt)
Observe: ∇ft(xt)
Recursion: Update

xt+1 = arg min
x∈K

{ t∑
k=1

∇fk(xk)Tx+
1

η
R(x)

}
.

RFTL is a class of OCO algorithms. One has to specify R to specify the properties of
RFTL.

3.2 Online Mirror Descent (lazy and agile)

Lazy OMD is an alternative way of defining RFTL in a more explicit way. For that we use
the convex duality defined as

Definition 10. Let R be a regularization function defined on the convex set K then its
convex conjugate R∗ is defined on the dual space K∗ = {∇R(x), x ∈ K} as

R∗(x∗) = max
x∈K
{xTx∗ −R(x)} , x∗ ∈ K∗ .

Exercise 7. Prove that R∗ is convex, R∗(x∗)+R(y) ≥ yTx∗ (the Fenchel-Young inequality)
and

∇R∗(x∗) = arg max
x∈K
{xTx∗ −R(x)} .

Compute the conjugate of R(x) = |x|p/p for any 1 < p <∞ in the unconstrained case.

It is very natural to introduce the duality since the control of the scalar product provided
in the Fenchel-Young inequality yields a regret bound from the gradient trick

T∑
t=1

∇ft(xt)Tx ≤ R∗
( T∑
t=1

∇ft(xt)
)

+R(x) .

The OMD algorithm is designed for obtaining a good bound over R∗
(∑T

t=1∇ft(xt)
)
.

OMD is an Online Gradient Descent in the convex "dual" space through the regular-
ization function R defined as {∇R(x), x ∈ Dom(∇R)}, the space of the gradients of R
(with restrictions on the domain of definition of definition of the gradients so that they
exists). The projection back to the primal space K is driven by the Bregman divergence of
R rather than by the Euclidian norm in OGD.

Definition 11. The Bregman divergence associated to the regularization function R is
defined as

BR(y||x) = R(y)−R(x)−∇R(x)T (y − x) .
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The Bregman divergence shares some similarities with weighted Euclidian norms

‖x‖2W = xTWx , W � 0 .

Exercise 8. Show that BR(x||y) ≥ 0 and BR(x||y) = 0 iff x = y.

Show that if R is twice continuously differentiable then

BR(x||y) =
1

2
‖x− y‖2z

where ‖ · ‖z is some local norm

‖x− y‖2z = (x− y)T∇2R(z)(x− y)

for z ∈ K on the segment [x, y].

Thus OMD will be specified through the properties of the Bregman divergence of R

Algorithm 8: Online Mirror Descent (lazy version), Hazan and Kale (2010)
Parameters: Regularization function R, step-size η > 0.
Initialization: Initial prediction x1 = arg minx∈KBR(x||y1) with y1 ∈ Rd such that
∇R(y1) = 0.
For each recursion t ≥ 1:
Predict: xt
Incur: ft(xt)
Observe: ∇ft(xt)
Recursion: Update

∇R(yt+1) = ∇R(yt)− η∇ft(xt) ,
xt+1 = arg min

x∈K
BR(x||yt+1) .

Notice that the gradient step makes a move over the dual space of the gradients
{∇R(x), x ∈ Dom(∇R)} which should be equal to Rd so that yt+1 is defined for any poten-
tial value of η∇ft(xt). One way to ensure that is to considerR so that limx→∂Dom(∇R) ‖∇R(x)‖2 =
∞ for any point in the frontier of the domain ∂Dom(∇R). Such regularization functions
are called Legendre regularization function and are implicitly considered in the following.

Theorem 8. The OMD (lazy version) is equivalent to RFTL.

Proof. We prove that

arg min
x∈K

BR(x||yt) = arg min
x∈K

{ t∑
k=1

∇fk(xk)Tx+
1

η
R(x)

}
.

Observe first that by recursion

∇R(yt) = ∇R(yt−1)− η∇ft−1(xt−1) = −η
t−1∑
k=1

∇fk(xk) .
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Hence

BR(x||yt) = R(x)−R(yt)−∇R(yt)
T (x− yt)

= R(x)−R(yt) + η
t−1∑
k=1

∇fk(xk)T (x− yt)

= η
t−1∑
k=1

∇fk(xk)Tx+R(x)−R(yt)− η
t−1∑
k=1

∇fk(xk)T yt︸ ︷︷ ︸
independent of x

The desired results follows.

Denoting θt = ∇R(yt) and using the relation

∇R∗(x) = arg max
y∈K
{yTx−R(y)} .

we have the equivalent formulation of the lazy OMD: We update

θt+1 = θt − η∇ft(xt) , xt+1 = ∇R∗(θt+1) ,

from the initialization θ1 = 0 and x1 = arg maxy∈K{yT θt+1−R(y)} = ∇R∗(θ0) . From that
simple formulation and using similar argument than for proving the OGD regret bound,
we get

Theorem 9. OMD (lazy version) and thus RFTL satisfy the regret bound,

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗) ≤ η

2

T∑
t=1

‖∇ft(xt)‖∗t
2 +

R(x∗)−R(x1)

η
,

where ‖ · ‖∗t
2 = ‖ · ‖2∇2R∗(z∗t ) for R∗ the convex conjugate of R and z∗t some point in K∗.

Proof. We use the gradient trick
T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗) ≤

T∑
t=1

∇ft(xt)T (xt − x∗) .

We introduce the mirror analysis by introducing the dual θt:
T∑
t=1

∇ft(xt)T (xt − x∗) = −1

η

T∑
t=1

(θt+1 − θt)Txt +
1

η
θTT+1x

∗

= −1

η

T∑
t=1

(θt+1 − θt)T∇R∗(θt) +
R(x∗) +R∗(θT+1)

η

as xt = ∇R∗(θt) and applying Young’s inequality. By definition of the Bregman divergence
T∑
t=1

∇ft(xt)T (xt − x∗) =
1

η

T∑
t=1

(R∗(θt)−R∗(θt+1) +BR∗(θt+1||θt)) +
R(x∗) +R∗(θT+1)

η

=
1

η

T∑
t=1

BR∗(θt+1||θt) +
R(x∗) +R∗(θ1)

η
.

One recognizes BR∗(θt+1||θt) = ‖θt+1 − θt‖∗t
2/2 = η2‖∇ft(xt)‖∗t

2/2 for z∗t on the segment
[θt, θt+1] and R∗(θ1) = maxy∈K y

T θ1 − R(y) = maxy∈K−R(y) = −R(x1). The desired
result follows.
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3.3 Specific OMD

3.3.1 Quadratic Regularization

Online Mirror Descent is usually thought as RFLT associated to quadratic R. Consider
R(x) = 1

2‖x − x1‖2 for an arbitrary x1 ∈ K and η > 0. Then ∇R(y1) = y1 − x1 = 0 iff
y1 = x1. Moreover

BR(x||y) =
1

2
‖x− x1‖2 −

1

2
‖y − x1‖2 − (y − x1)T (x− y)

=
1

2
‖x− y + y − x1‖2 −

1

2
‖y − x1‖2 − (y − x1)T (x− y)

=
1

2
‖x− y‖2

so that

xt+1 = arg min
x∈K

BR(x||yt+1) = ΠK(yt+1) .

We have ∇R(yt+1) = (yt+1 − x1) = θt+1 = −η
∑t

k=1∇ft(xt) so that

yt+1 = yt − η∇ft(xt), y1 = x1 .

Thus OMD for quadratic regularization function is an unconstrained OGD then projected
on K at each iteration.
Algorithm 9: Online Mirror Descent (for quadratic R)
Parameters: step-size η > 0.
Initialization: Initial prediction x1 = y1 ∈ K.
For each recursion t ≥ 1:
Predict: xt
Incur: ft(xt)
Observe: ∇ft(xt)
Recursion: Update

yt+1 = yt − η∇ft(xt) ,
xt+1 = ΠK(yt+1) .

Remark 3. An agile version of the general OMD consists in replacing the recursion step
∇R(yt+1) = ∇R(yt)−η∇ft(xt) with ∇R(yt+1) = ∇R(xt)−η∇ft(xt). It moves faster than
the lazy version of the OMD for the same learning rates. Note that the agile version of
OMD with quadratic regularizer R is equivalent to OGD for the same learning rate.

Exercise 9. Show that in the unconstrained CO problem the lazy and agile versions of the
OMD coincide. On the contrary, imagine a CO problem such that both OMD with quadratic
regularization are projected at each step over the unit Euclidian ball K = B1. Then show
that the lazy version with fixed η = 1 coincides with the agile version only if its learning
rate at time t is ‖

∑t−1
s=1∇fs(xs)‖−1 < 1.
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Since R∗(x∗) = 1
2‖x

∗ − x1‖2 ≤ D2

2 we get the regret bound

T∑
t=1

ft(xt)−
T∑
t=1

ft(u) ≤ η

2

T∑
t=1

‖∇ft(xt)‖2 +
‖x∗ − x1‖2

2η

≤ 1

2

(
ηTG2 +

D2

η

)
≤ GD

√
T

choosing η = D/(G
√
T ). The lazy and agile (OGD) versions of the OMD have similar

regret bound despite different moves.

Algorithm 10: SMD (lazy version) for linear SVM
Parameters: Epoch T , radius z > 0
Initialization: Initial point x1 = y1 = 0.
Sample uniformly iid: (It)1≤t≤T from {1 ≤ i ≤ n}
For each iteration t = 1, . . . , T :
Iteration: Update

ηt = 1/
√
t ,

yt+1 = yt − ηt∇`aIt ,bIt (xt),
xt+1 = ΠB1(z)(yt+1) .

Return: xT+1 =
1

T + 1

T+1∑
t=1

xt

One implements the stochastic version of OMD on MNIST. Notice that the regulariza-
tion parameter is not required since the OMD presented here solves any convex problem
and not only the strongly convex ones. The strong convex regularization is introduced
implictely in the OMD. Despite slower theoretical rates of convergences the accuracies are
very similar to regularized SGD. The better convergences at the end of the experiments
are due to the importance of the explicit egularization term that deviates regularized SGD
from its objective.
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3.3.2 Randomized strategies, expert advice

Recall the randomized strategy from the Rock, Paper and Scissor game. More generally,
consider the setting of d experts with losses `t,i, 1 ≤ i ≤ d.

Definition 12. The Expert Advice is the assignment of confidents weights xt,i to each
experts 1 ≤ i ≤ d in order to get the best randomized strategy that picks randomly an expert
It with probability xt,It . The aim is to bound the averaged regret

E[RegretT (`)] = E
[ T∑
t=1

`t,It − min
1≤i≤d

T∑
t=1

`t,i

]
.

We notice that

E[RegretT (`)] =
T∑
t=1

Ext [`t,It ]− min
1≤i≤d

T∑
t=1

`t,i .

Denoting the linear loss function ft(xt) = Ext [`t,It ] =
∑d

i=1 xt,i`t,i = xTt `t, we recognize an
OCO problem on the linear loss over the simplex Λ.

Exercise 10. Check that minx∈Λ x
T
∑T

t=1 `t = min1≤i≤d
∑T

t=1 `t,i.

Let R(x) = xT log(x) =
∑d

i=1 xi log(xi) be the negative entropy function. We consider
it as a regularization function over Λ since

∇R(x) = 1 + log(x) , ∇2R(x) = Diag(1/x2) � Id
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even if it is not well defined on the boundary of the simplex when xi = 0 for some 1 ≤ i ≤ d.
Note the the dual space {∇R(x), x ∈ Dom(∇R)} = Rd. In order to express OMD (lazy
version), we obtain an expression for

∇R∗(y) = arg max
x∈Λ
{yTx−R(x)} .

We compute the Lagrangian function

L(x, θ, ζ) = y −∇R(x) + θ
( d∑
i=1

xi − 1
)
−

d∑
i=1

ζixi

with parameters x ∈ Rd, θ ∈ R and ζ ∈ Rd+. We deduce its gradient

∇L(x, θ, ζ) =

y − log(x) + (θ − 1) I1− ζ∑d
i=1 xi − 1
−x

 , I1 = (1, . . . , 1)T .

From KKT, we get the conditions
x = exp(y + (θ − 1) I1− ζ)∑d

i=1 xi = 1

xiζi = 0 , 1 ≤ i ≤ d .

From the first condition we see that xi > 0 so that ζ must be null. We get

x =
exp(y)∑d
i=1 exp(yi)

.

We obtain the randomized strategy of expert advice called Exponentiated Weighting Al-
gorithm.
Algorithm 11: EWA, Littlestone and Warmuth (1994)
Parameters: step-size η > 0.
Initialization: Initial prediction x1 = (1/d) I1 and θ1 = 0.
For each recursion t ≥ 1:
Sample an expert: It ∼ xt
Predict as the It-th expert
Incur the loss: `t,It
Observe: `t ∈ Rd
Recursion: Update

θt+1 = θt − η`t ,

xt+1 =
exp(θt+1)∑d
i=1 exp(θt+1,i)

.

Exercise 11. Show that EWA coincides with the agile version of OMD with negative
entropic regularizer.

Remark 4. We have complete information since we observe all the losses `t ∈ Rd despite
we pick only one expert It ∼ xt.
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We note that∇ft(xt) = `t because ft(xt) = xTt `t. Since∇R∗(θ) = exp(θ)/(
∑d

i=1 exp(θi)) =
x we get ∇2R∗(y) = Diag(x)− xxT so that

‖∇ft(xt)‖∗t
2 = ‖`t‖2∇2R∗(θ̃)

for some θ̃ in the segment [θt, θt+1] so that denoting x̃ = exp(θ̃)/(
∑d

i=1 exp(θ̃i)) the corre-
sponding weights, we obtain

‖∇ft(xt)‖∗t
2 =

( d∑
i=1

x̃i`
2
t,i −

( d∑
i=1

x̃i`t,i

)2)
≤ G2

∞

where |`t,i| ≤ G∞ for all t ≥ 1, 1 ≤ i ≤ d. We obtain, denoting f(x) = xT ` that

E[RegretT (`)] = RegretT (f) ≤ ηTG2
∞

2
+

log d

η
≤ G∞

√
2T log d ,

choosing η = G−1
∞
√

2 log d/T .

Remark 5. The dependence on the dimension in
√

log d is optimal and is due to the
use of the duality of the negative entropy which is restricted to the `1-ball. Indeed G∞ =
max1≤i≤d |`t,i| = supx∈Λ ‖∇ft(x)‖∞ = GR∗ and

log d = sup
x,x′∈Λ

R(x)−R(x′) = D2
R

the "diameter" of Λ for the regularization function. Thus the regret bound is of order
GR∗DR

√
T . Here the dependence in the dimension of GR∗DR is optimal in

√
log d. Such a

dependence in the dimension is not achievable when constraining to the `2-ball whatever is
the choice of the regularization R. There the dependence in GD ≈

√
d in the regret analysis

of OGD is optimal without additional constrained.

Example 4. Back to Rock, Paper and Scissor we get an averaged regret bound which is
sub-linear in the complete adversarial setting

T∑
t=1

max
y∈Λ

yTAxt − min
1≤i≤3

T∑
t=1

max
y∈Λ

yTAi ≤
√

2T log 3 ,

where Ai represent the i-th column of the cost matrix. Since any deterministic strategy
incur a loss of 1 at each round in the complete adversarial setting, we get

T∑
t=1

max
y∈Λ

yTAxt ≤ T +
√

2T log 3 ,

It is a useless bound and shows the limit of the regret analysis which is relative to a fixed
strategy that can be bad in a complete adversarial setting.

A powerful consequence of the OCO analysis is the combination of EWA with the
gradient trick on K = Λ. For any algorithm we have the gradient trick

RegretT (f) ≤
T∑
t=1

∇ft(xt)(xt − x∗) ≤
T∑
t=1

(∇ft(xt)Txt −∇ft(xt)Tx∗) .
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One interprets the upper bound as the regret of a randomized strategy of d experts with
linearized losses `t = ∇ft(xt). We obtain

Algorithm 12: Hedge, Littlestone and Warmuth (1994)
Parameters: step-size η > 0.
Initialization: Initial prediction x = (1/d) I1 and θ1 = 0..
For each recursion t ≥ 1:
Predict: xt
Incur: ft(xt)
Observe: ∇ft(xt) ∈ Rd
Recursion: Update

θt+1 = θt − η∇ft(xt) ,

xt+1 =
exp(θt+1)∑d
i=1 exp(θt+1,i)

.

We immediately get the optimal regret bound

RegretT (f) =
T∑
t=1

ft(xt)−min
x∈Λ

T∑
t=1

ft(x) ≤ E[RegretT (∇f)] ≤ G∞
√

2T log d .

Note that thanks to the gradient trick the regret bound is now relative to the best fixed
strategy of the simplex.

Example 5. Back to Rock, Paper and Scissor Hedge get an averaged regret bound which
is sub-linear in the complete adversarial setting

T∑
t=1

max
y∈Λ

yTAxt −min
x∈Λ

T∑
t=1

max
y∈Λ

yTAx ≤
√

2T log 3 ,

where Ai represent the i-th column of the cost matrix. Since the randomized strategy
(1/3, 1/3, 1/3) incurs the loss 0 at each round in the complete adversarial setting, we get

T∑
t=1

max
y∈Λ

yTAxt ≤
√

2T log 3 .

It is a very useful bound to prove the von Neumann minimax theorem in zero-sum games.

Exercise 12. In Rock, Paper and Scissor show that the algorithms Hedge and EWA coin-
cides with the optimal randomized strategy (1/3, 1/3, 1/3).

An extension to the OCO over K = B1(z) the `1-ball of radius z > 0 is achieved using
2d-experts from the following representation

Lemma 1. Every x ∈ B1(z) satisfies xi = z(wi − wi+d), 1 ≤ i ≤ d, where w ∈ Λ2d.

Proof. Introduce d parameters λi ≥ 0 and define

wi = xi+/z + λi , wi+d = xi−/z + λi , 1 ≤ i ≤ d ,

where xi±/z = max(±xi, 0). Then xi = z(wi − wi+d) and w ∈ Λ2d if and only if

‖w‖1 =

2d∑
i=1

wi = ‖x‖1/z + ‖λ‖1 = 1 .

There exists such λ ≥ 0 because ‖x‖1/z ≤ 1 (even infinitely many when ‖x‖1 < z).
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Indeed the gradient trick still holds and denoting xi = z(wi −wi+d) the linearized loss

∇ft(xt)Txt =
d∑
i=1

∇ft(xt)ixt,i = z
( d∑
i=1

∇ft(xt)iwt,i−
d∑
i=1

∇ft(xt)iwt,i+d
)

= z±∇̂ft(xt)Twt

where wt ∈ Λ2d and

±∇̂ft(xt) = (∇ft(xt)1, . . . ,∇ft(xt)d,−∇ft(xt)1, . . . ,−∇ft(xt)d) ∈ R2d.

Thus we obtain a reduction of the OCO problem on B1(z) to the OCO problem on w ∈ Λ2d

and we get

Algorithm 13: Exponentiated Gradient +/-, Kivinen and Warmuth (1997)
Parameters: step-size η > 0, radius z > 0.
Initialization: Initial prediction x = 0 weights w = 1/(2d) I1 and θ1 = 0 ∈ R2d.
For each recursion t ≥ 1:
Predict: xt
Incur: ft(xt)
Observe: ∇ft(xt) ∈ Rd
Recursion: Update

θt+1,i = θt,i − η∇ft(xt)i , 1 ≤ i ≤ d ,
θt+1,i = θt,i + η∇ft(xt)i , d+ 1 ≤ i ≤ 2d ,

wt+1 =
exp(θt+1)∑2d
i=1 exp(θt+1,i)

,

xt+1,i = z(wt+1,i − wt+1,i+d) , 1 ≤ i ≤ d .

We immediately get the optimal regret bound choosing η = (zG∞)−1
√

2 log d/T

RegretT ≤ G∞z
√

2T log(2d) .

One implements the stochastic version of EG+/- on MNIST and improved the perfor-
mances of SMD (the radius of the `1-ball is still z = 100).
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Algorithm 14: SEG+/- for linear SVM
Parameters: Epoch T , radius z > 0.
Initialization: Initial point x1 = 0, weights w = 1/(2d) I1 and θ1 = 0 ∈ R2d.
Sample uniformly iid: (It)1≤t≤T from {1 ≤ i ≤ n}
For each iteration t = 1, . . . , T :
Iteration: Update

ηt =
√

1/t

θt+1 = θt − ηt ±∇`aIt ,bIt (xt) ,

wt+1 =
exp(θt+1)∑2d
i=1 exp(θt+1,i)

,

xt+1,i = z(wt+1,i − wt+1,i+d) , 1 ≤ i ≤ d .

Return: xT+1 =
1

T + 1

T+1∑
t=1

xt
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3.3.3 AdaGrad

We recall the regret bound for the general OMD or RFTL

RegretT ≤
η

2

T∑
t=1

‖∇ft(xt)‖∗t
2 +

R(x∗)−R(x1)

η

which is equal to, if η is optimized by an oracle,

RegretT ≤

√√√√2
T∑
t=1

‖∇ft(xt)‖∗t
2(R(x∗)−R(x1)) .

As we saw this bound heavily depends on the choice of the regularization function R. The
best choice of R heavily depends on the properties of the gradients ∇ft(xt) of the losses of
the algorithm itself. AdaGrad will learn how to choose the best regularization function.

We restrict R to the class H of weighted quadratic regularization R(x) = 1
2‖x− x1‖2D

satisfying
∀x ∈ K,∇2R(x) = D = Diag(s) , s ∈ (0,∞)d, ‖s‖1 ≤ 1, .

Remark 6.

• R(x) = 1
2d‖x‖

2 such that ∇2R(x) = 1
dId and R ∈ H,

• R(x) = xT log(x) such that ∇2R(x) = Diag(1/x) is not in H.

We first determine what could be the best possible regret bound. We compute the
second derivative of the convex conjugate ∇2R∗(x∗) = D−1 for D � 0 and

min
R∈H

T∑
t=1

‖∇ft(xt)‖∗t
2 = min

D=Diag(s)

T∑
t=1

‖∇ft(xt)‖2D−1

= min
s∈Rd+ ,‖s‖1≤1

T∑
t=1

d∑
i=1

∇ft(xt)2
i s
−1
i

Applying Cauchy-Schwartz, we have

d∑
i=1

(√√√√ T∑
t=1

∇ft(xt)2/s
)2

i

d∑
i=1

√
s

2
i ≥

( d∑
i=1

√√√√ T∑
t=1

∇ft(xt)2
i

)2

so that

min
s∈Rd+ ,‖s‖1≤1

T∑
t=1

d∑
i=1

∇ft(xt)2
i s
−1
i ≥

( d∑
i=1

√√√√ T∑
t=1

∇ft(xt)2
i

)2
.

Note that this minimizer is achieved by ‖s∗‖1 = 1 for

s∗i =

√∑T
t=1∇ft(xt)2

i∑d
i=1

√∑T
t=1∇ft(xt)2

i

.

Thus the best possible regret in this class of regularization function is

RegretT ≤
d∑
i=1

√√√√2(R(x∗)−R(x1))

T∑
t=1

∇ft(xt)2
i ≤ D∞

d∑
i=1

√√√√ T∑
t=1

∇ft(xt)2
i ,
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using that R(x∗) = ‖x∗ − x1‖2D/2 ≤ ‖x∗ − x1‖2∞‖s‖1/2 ≤ D2
∞/2. However such optimal

regularization function is not known before step T . AdaGrad solves this problem by con-
sidering a multiple adaptive learning rates approach; each coordinate will have its own
gradient step close to the optimal si.

Algorithm 15: AdaGrad (diagonal version), Duchi et al. (2011)
Parameters: step-size η > 0.
Initialization: Initial prediction y1 = x1 ∈ K, initial multiple learning rates S0 = 0
(or = δ I1 small).
Predict: xt
Incur the average loss: ft(xt)
Observe: ∇ft(xt) ∈ Rd
Recursion: Update

St = St−1 +∇ft(xt)2

Dt = Diag(
√
St)

yt+1 = xt − ηD−1
t ∇ft(xt) ,

xt+1 = arg min
x∈K
‖x− yt+1‖2Dt , 1 ≤ i ≤ d .

We notice that AdaGrad is an agile OMD algorithm with adaptive regularization func-
tions Rt(x) = 1

2‖x− x1‖2Dt since then

∇Rt(yt+1) = ∇Rt(xt)− η∇ft(xt) , BRt(x||y) =
1

2
‖x− y‖2Dt .

Theorem 10. For η = D∞/
√

2 with D∞ = maxx,y∈K ‖x − y‖∞ AdaGrad get the regret
bound

RegretT ≤ D∞
d∑
i=1

√√√√2

T∑
t=1

∇ft(xt)2
i .

Since the regularization functions are depending on t, one has to adapt the simple
analysis of OGD above.

Proof. We start from the recursive relation yt+1−u = yt−u−ηD−1
t ∇ft(xt) that we rewrite

as Dt(yt+1 − u) = Dt(yt − u)− η∇ft(xt) so that multiplying both relations we get

‖yt+1 − u‖2Dt = (yt+1 − u)TDt(yt+1 − u)

= ‖xt − u‖2Dt − 2η∇ft(xt)T (xt − u) + η2‖∇ft(xt)‖2D−1
t
.

By the pythagorean Theorem we also have ‖xt+1 − u‖2Dt ≤ ‖yt+1 − u‖2Dt so that

2η∇ft(xt)T (xt − u) ≤ ‖xt − u‖2Dt − ‖xt+1 − u‖2Dt + η2‖∇ft(xt)‖2D−1
t
.
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Then we get

2
T∑
t=1

∇ft(xt)T (xt − u) ≤1

η

T∑
t=1

(
‖xt − u‖2Dt − ‖xt+1 − u‖2Dt + η2‖∇ft(xt)‖2D−1

t

)
≤1

η

T∑
t=1

(
‖xt − u‖2Dt − ‖xt − u‖

2
Dt−1

)
+ η

T∑
t=1

‖∇ft(xt)‖2D−1
t
,

with the convention D0 = Diag(S0).
For the first term we use the telescoping sum

T∑
t=1

(xt − u)T (Dt −Dt−1)(xt − u) ≤ D2
∞

d∑
i=1

T∑
t=1

(
√
St −

√
St−1)i ≤ D2

∞

d∑
i=1

√
ST,i .

For the last term, we get

T∑
t=1

‖∇ft(xt)‖2D−1
t

=
T∑
t=1

d∑
i=1

(∇ft(xt)2/
√
St)i

≤
d∑
i=1

T∑
t=1

((St − St−1)/
√
St)i .

By a comparison with an integral, we get

T∑
t=1

(St,i − St−1,i)/
√
St,i ≤

∫ ST,i

0

dx√
x

= 2
√
ST,i .

Finally we obtain the regret bound

1

2

(D2
∞
η

+ 2η
) d∑
i=1

√
ST,i

which yields the desired result as η = D∞/
√

2.

Remark 7. Denoting Di = maxx,y∈K |(x − y)i| we immediately improve the regret bound
to

RegretT ≤
d∑
i=1

Di

√√√√2
T∑
t=1

∇ft(xt)2
i ≤

√√√√ d∑
i=1

D2
i

√√√√2
T∑
t=1

∇ft(xt)2
i

by Cauchy-Schwartz inequality. Since for hyper-rectangles K we have
∑d

i=1D
2
i = D2 =

maxx,y∈K ‖x − y‖2, if the gradients were the same for OGD and Adagrad then the best
possible regret for OGD is always larger than the one for Adagrad.
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In order to implement AdaGrad to the linear SVM one has to explicit the projection
step.
Algorithm 16: Adagrad for linear SVM
Parameters: Epoch T , radius z > 0.
Initialization: Initial point x1 = y1 = 0 and S0 = 0 (or = δ I1 small).
Sample uniformly iid: (It)1≤t≤T from {1 ≤ i ≤ n}
For each iteration t = 1, . . . , T :
Iteration: Update

St = St−1 +∇`aIt ,bIt (xt)
2

Dt = Diag(
√
St)

yt+1 = xt −D−1
t ∇`aIt ,bIt (xt) ,

xt+1 = arg min
x∈B1(z)

‖x− yt+1‖2Dt , 1 ≤ i ≤ d .

Return: xT+1 =
1

T + 1

T+1∑
t=1

xt

For that one has to adapt the Euclidian projection on the simplex to weighted norms.
One has to solve the CO

arg min
w∈B1(z)

d∑
i=1

‖w − x‖2D .

We have the Lagrangian function

L(x, θ, ζ) =
1

2
(w − x)TD(w − x) + θ

( d∑
i=1

wi − 1
)
−

d∑
i=1

ζiwi

with parameters w ∈ Rd, θ ∈ R and ζ ∈ Rd+. We compute its gradient

∇L(w, θ, ζ) =

D(w − x) + θ I1− ζ∑d
i=1wi − 1
−w

 , I1 = (1, . . . , 1)T .

Thus KKT provides 
w∗ = x−D−1(θ∗ I1 + ζ∗) ,∑d

i=1w
∗
i = 1

w∗i = 0 or w∗i > 0 and ζ∗i = 0 .

To sum up we obtain the weighted soft-thresholding

w∗i = max(x−D−1θ∗ I1, 0) = D−1SoftThreshold(Dx, θ∗).

Thus denoting ‖w∗‖0 = d0 we get the relation

1 =

d0∑
j=1

w∗(j) =

d0∑
j=1

D−1SoftThreshold(Dx, θ∗) =

d0∑
j=1

x(j) −
d0∑
j=1

D−1
(j)θ

∗

where D(j) is the diagonal element of D with the same ordering so that necessarily

θ∗ =
1∑d0

j=1D
−1
(j)

( d0∑
j=1

x(j) − 1
)
.
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We obtain

Algorithm 17: Projection on the simplex with weighted norm ‖ · ‖D
Input: x ∈ Rd and D diagonal.
If x ∈ Λ
Then Return x.
Else
Sort (Dx)(1) ≥ · · · ≥ (Dx)(d)

Find d0 = max
{

1 ≤ i ≤ d; (Dx)(i) − 1∑i
j=1D

−1
(j)

(
∑i

j=1 x(j) − 1
)}

Define θ∗ = 1∑d0
j=1D

−1
(j)

(∑d0
j=1 x(j) − 1

)
Return w∗ = D−1SoftThreshold(Dx, θ∗).

Recall that for the hinge loss we have, for any instance (a, b) of the training set
(at, bt)1≤t≤d

∇`a,b(xt) =

{
0 if bxTa > 1 ,

−ba else .

Assume that the design is sparse, i.e. we have

P(ai 6= 0) = min{1, ci−α}

for some α ∈ (2,∞) and any 1 ≤ i ≤ d. Then the regret of Adagrad is low in expectation

E[Regrett] ≤ D∞
d∑
i=1

E
[√√√√2

T∑
t=1

∇ft(xt)2
i

]

≤ D∞
d∑
i=1

√√√√2
T∑
t=1

E
[
∇ft(xt)2

i

]

≤ D∞G∞
√

2T
d∑
i=1

√
P(ai 6= 0)

≤ D∞G∞
√

2cT

d∑
i=1

i−α/2

≤ D∞
√

2cT (1 + log d) ,

where ‖[∇ft(xt)‖∞ ≤ G∞ for any 1 ≤ t ≤ T . Taking advantage of the sparsity thanks to
the adaptivity of AdaGrad one turns a G ≈

√
d regret bound of OGD into a log d one.

Implemented on MNIST, Adagrad clearly takes advantage of the sparsity in the pixels
of the the handwritten digits in a better way than the projection of the `1-ball. It is due
to the fact that Adagrad learns the sparsity via the gradients whereas the radius of the
`1-ball (or equivalently the regularization parameter in the dual LASSO problem) is fixed
a priori (here arbitrarily to z = 100).
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3.3.4 BOA

BOA is a multiple learning rate version of EG. The idea is to combine the adaptivity of
the simplicity of the gradients as in Adagrad together with the use of the geometry of
the convex set K = Λ via the negative entropy regularization function. Note that it is
necessary to add a quadratic compensation to the gradient in the exponential weights in
order to get theoretical guarantees.

Implemented on MNIST the rate seems to be faster than for Adaproj. It s due to
the introduction of the quadratic compensation that can be seen as an estimation of the
variance of the estimation ∇̂f in the stochastic setting. Then BOA seeks at achieving
a good bias-variance tradeoff in stochastic environment. Note that an even better bias-
variance tradeoff will be achieved by Adam thanks to momentum.
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Algorithm 18: SBOA+/- for linear SVM, Wintenberger (2017)
Parameters: Epoch T , radius z > 0.
Initialization: Initial point x1 = 0, weights w = 1/(2d) I1 and η0 = I1 ∈ R2d.
Sample uniformly iid: (It)1≤t≤T from {1 ≤ i ≤ n}
For each iteration t = 1, . . . , T :
Iteration: Update

∇`t = wTt ±∇`aIt ,bIt (xt)
θt+1 = θt −±∇`aIt ,bIt (xt)− ηt−1(±∇`aIt ,bIt (xt)−∇`t)

2 ,

ηt =
√
η2
t−1/(1 + η2

t−1(±∇`aIt ,bIt (xt)−∇`t)
2)

wt+1 =
ηt exp(ηtθt+1)∑2d

i=1 ηt,i exp(ηtθt+1,i)
,

xt+1,i = z(wt+1,i − wt+1,i+d) , 1 ≤ i ≤ d .

Return: xT+1 =
1

T + 1

T+1∑
t=1

xt
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Part III

Acceleration and exploration
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Chapter 4
Accelerated OCO algorithms

4.1 Momentum

A variant of AdaGrad with momentum is the popular algorithm called Adam, Kingma and
Ba (2014). Momentum is popular in time series analysis and has been introduced first by
Nesterov (1983) as an acceleration scheme in a CO method. Initially the momentum step
was applied to the iterate xt of the algorithm. It can also accelerate OCO algorithms in
practice in the stochastic OCO setting. A natural way of introducing momentum in SGD
methods is directly on the successive gradients.

Recall that SGD is based on an unbiased noisy version of the CO problem (f,K) denoted
∇̂f . In such a setting ∇̂f(xt) is an unbiased estimator of ∇f(xt) since ∇̂f is a noisy version
of ∇f with mean ∇f . One defines a better estimator of this mean by averaging. However
the objective ∇f(xt) is evolving through time t.

The momentum estimator mt is an iterative way of approximating ∇f(xt) called Ex-
ponential Moving Average in times series analysis, namely

mt = βmt−1 + (1− β)∇̂f(xt) ⇐⇒ mt = (1− β)

t−1∑
j=0

βj∇̂f(xt−j) .

Note that since (1 − β)
∑t−1

j=0 β
j = 1 − βt 6= 1 on should debiased the momentum mt by

dividing it by 1 − βt. If successive gradients are pointing toward different directions (as
they are noisy) then the erratic directions could averaged and canceled. However if β is too
large then past gradients are taken into account in the momentum which might introduce
a bias in the estimation of the gradient of the last iterate ∇f(xt).

Indeed the variation of each coordinate mt,i

vt,i = (1− β)
t−1∑
j=0

βj(∇̂f(xt−j)i − (1− β)
t−1∑
j=0

βj∇̂f(xt−j)i)
2

satisfies the recursive relation

vt,i = (1− β)(vt−1,i + β(∇̂f(xt−1)i −mt−1,i)
2)

so that it is comparable to (1 − β)(∇̂f(xt)i −mt−1,i)
2 in a stationary regime when vt,i ≈

vt−1,i. The variation of noisy ∇̂f might then be reduced from a factor (1 − β) thanks to
momentum.

47



48 CHAPTER 4. ACCELERATED OCO ALGORITHMS

The choice of β is tricky since the larger β the smaller the variations of mt but the
longer the memory of the momentum. If β is well chosen, a momentum on the stochastic
gradients might increase the accuracy of the estimation of the true gradient by reducing
the variance and thus accelerating the convergence without deteriorating the stability of
the algorithm.

Remark 8. There exists many other ways of accelerating SGD by improving the estimate
of the gradient ∇f(xt).

One way is to use moving averages, i.e. considering

mt =
1

k

k∑
i=1

∇̂f t(xt−i+1)

in the recursion instead of the instantaneous noisy gradient ∇̂f(xt). A large k decreases
the variation of the averages of an order k−1 when xt−i+1 is stable for any i = 1, . . . , k but
may increase the bias when the iterates xt−i+1 are very far from the last one xt.

A usual mini-batch scheme is that xt = xt−k+1 for a fixed k > 0 and for each t ∈ kN+1
we consider

mt =
1

k

k∑
i=1

∇̂f t−i+1(xt) .

Then the variance of the estimator of ∇f is decreased of an order k−1 without deteriorating
the bias. However it increase the complexity of each gradient step by a factor k. It corre-
sponds to an interpolation between OCO and CO. The question of the optimal choice of k
is difficult as the decrease of the accuracy is at the price of an increase of the complexity.

The novelty to Adam is to apply a momentum to the squares of the gradient as well.
The motivation comes from the multiple learning rates of Adagrad

1√
t

1√
1
t

∑t
k=1 ∇̂f t(xt)2

i

, 1 ≤ i ≤ d ,

and to interpret it as the multiplication of the learning rate
1√
t
together with the inverse

of an estimator of the noise level

√√√√1

t

t∑
k=1

∇̂f t(xt)2
i ≈

√
E[∇̂f t(xt)2

i ] .

In this interpretation the noise level of the approximation ∇̂f is measured according to
a moment of order 2. The same reasoning as before shows that a momentum might im-
prove the estimation of the second order moments of the noisy gradients for a well chosen
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coefficient β.

Algorithm 19: Adam for linear SVM, Kingma and Ba (2014)
Parameters: Epoch T , radius z > 0, β1 = 0.9 and β2 = 0.999.
Initialization: Initial point x1 = y1 = 0 and S0 = 0 (or = δ I1 small).
Sample uniformly iid: (It)1≤t≤T from {1 ≤ i ≤ n}
For each iteration t = 1, . . . , T :
Iteration: Update

ηt = 1/
√
t ,

mt = β1mt−1 + (1− β1)∇`aIt ,bIt (xt)
St = β2St−1 + (1− β2)∇`aIt ,bIt (xt)

2

Dt = Diag(
√
St)

yt+1 = xt − ηtD−1
t mt ,

xt+1 = arg min
x∈B1(z)

‖x− yt+1‖2Dt , 1 ≤ i ≤ d .

Return: xT+1 =
1

T + 1

T+1∑
t=1

xt

In practice one chooses β2 >>> β1 as the noise level of the gradient directions are
thought as more stable than the direction of the gradient. The best bias-variance trade-off
is then achieved for β2 ≈ 1, taking into account a large number of past squared gradients.

Remark 9. Acceleration of algorithms might be introduced carefully in order to control its
stability. Momentum on gradients and on the squared gradients as in Adam may accelerate
AdaGrad in optimistic stochastic OCO settings.

However in an OCO setting with K = [−1, 1] and ∇ft(xt) = C > 2 for t = 3k−1, k ≥ 1,
and ∇ft(xt) = −1 otherwise, Adam does not converge since ηtD−1

t is not a decreasing
sequence. Worst Adam converges to 1 whereas x∗ = −1 for β2 = (1 + C2)−1. Thus β2

should be taken very large as advised in Kingma and Ba (2014). Worst, for any choice√
β2 > β1, there still exists another OCO setting where the regret of Adam is linear, see

Reddi et al. (2019). Thus Adam fails in the OCO setting because it does not converge when
the losses fluctuates. Similar than FTL it can overfit but on the contrary to FTL Adam is
explicit with low complexity O(d) for each iterate.

These restrictions remains true for other accelerations such as moving averages dis-
cussed above but not for mini-batch.

Adam is very efficient in practice when applied to MNIST dataset. Moreover it works
also extremely well in deep learning training, beyond the convex loss function setting
(flat high-dimensional problems) where the objective is not necessarily to converge to a
minimizer that does not exist. It explains the success of this algorithm and its variants in
deep learning.
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4.2 Online Newton Step (ONS)

Despite excellent practical acceleration observed in practice in Adam, it is impossible to
accelerate OCO algorithms without extra assumptions on the loss function. We have
already seen that for α strongly convex loss functions then SGD with learning rates ηt =
1/(αt) achieves a logarithmic regret.

4.2.1 Exp-concave functions

In many practical situation the strong convexity assumption is too strong.

Example 6. Consider the linear SVM setting in MNIST with pixels a ∈ Rd and label
b ∈ {−1, 1} together with the square loss as a relaxation of the 0/1 loss

˜̀
a,b(x) = (b− xTa)2 .

Not that despite the square function y → y2 is 2-strongly convex, it is not always the case
of ˜̀. Indeed one computes

∇˜̀a,b(x) = 2(b− xTa)a and ∇2 ˜̀
a,b(x) = 2aaT ,

that is convex iff
2aaT � αId.
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We get a contradiction since aaT is a rank one matrix that cannot be invertible (except for
d = 1). Thus ˜̀a,b is not strongly convex.

We have to introduce the notion of exp-concavity

Definition 13. A convex function f : K 7→ R is exp-concave on iff the function g(x) =
exp(−µf(x)) is concave.

We have the following property

Lemma 2. A twice differentiable function f : K 7→ R is µ-exp-concave iff

∇2f(x) � µ∇f(x)∇f(x)T , x ∈ K .

Proof. We have g(x) twice differentiable that is concave iff ∇2g(x) � 0, x ∈ K. We
compute

∇g(x) = −µ∇f(x) exp(−µf(x))

∇2g(x) = (µ2∇f(x)∇f(x)T − µ∇2f(x)) exp(−µf(x))

and ∇2g(x) � 0 iff

µ2∇f(x)∇f(x)T − µ∇2f(x) � 0

µ∇f(x)∇f(x)T − µ∇2f(x) � ∇2f(x)

Notice that the rank one matrix ∇f(x)∇f(x)T � 0 by construction so that ∇2f(x) � 0
and f is convex.

Exercise 13. A α-strongly convex G-Lipschitz function is α/G2-exp-concave.

However there are many examples of exp-concave functions that are not strongly convex.

Example 7. In Example 6 we have

∇˜̀a,b(x)∇˜̀a,b(x)T = 4(b− xTa)2aaT � 2

µ
aaT

iff maxx∈K 2(b− xTa)2 ≤ 1
µ . In particular µ is proportional to the amplitude of the square

loss and is independent of the dimension of the OCO problem.

We would need the following stronger property of exp-concavity, valid in the usual
bounded setting.

Proposition 6. Let f : K 7→ R be µ-exp-concave, D be the diameter of K and ‖∇f(x)‖ ≤
G, x ∈ K, for some G > 0 as usual. Then

f(y) ≥ f(x) +∇f(x)T (y − x) +
γ

2
(y − x)T∇f(x)∇f(x)T (y − x) , x, y ∈ K ,

with γ ≤ 1
2 min( 1

GD , µ).

Proof. As 2γ ≤ µ then h(x) = exp(−2γf(x)) is a concave function and

h(y) ≤ h(x) +∇h(x)T (y − x) .
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We compute ∇h(x) = −2γ∇f(x) exp(−2γf(x)) so that by plugging in

exp(−2γf(y)) ≤ exp(−2γf(x))− exp(−2γf(x))2γf(x)T (y − x)

≤ exp(−2γf(x))(1− 2γf(x)T (y − x)) .

Thus we get

f(y) ≥ f(x)− 1

2γ
log(1− 2γ∇f(x)T (y − x)) .

Using the boundedness |2γ∇f(x)T (y − x)| ≤ 2γGD ≤ 1 and that

− log(1− z) ≥ z +
1

4
z2 z ≤ −1 ,

we obtain
f(y) ≥ f(x) +∇f(x)T (y − x) +

1

8γ
(2γ∇f(x)T (y − x))2

and the desired result follows.

4.2.2 Online Newton Step (ONS) algorithm

The ONS is an OCO adaptation of the Newton-Raphson step from CO problems

xt+1 = xt − ηH−1
t ∇f(xt)

where Ht = ∇2f(xt) and η > 0.
In the OCO setting, one can advantageously replace Ht by an approximation as a func-

tion of the gradients only, namely 1
t

∑t
k=1∇fk(xk)∇fk(xk)T , under weaker assumption,

namely exp-concavity. We obtain the ONS algorithm

Algorithm 20: Online Newton Step, Hazan and Kale (2011)
Initialization: γ > 0 and ε > 0.
Initialization: Initial prediction x1 ∈ K and A0 = εId.
Predict: xt
Incur: ft(xt)
Observe: ∇ft(xt) ∈ Rd
Recursion: Update

At = At−1 +∇ft(xt)∇f(xt)
T

yt+1 = xt −
1

γ
A−1
t ∇ft(xt) ,

xt+1 = arg min
x∈K
‖x− yt+1‖2At .

Remark 10. There exists some resemblance with Adagrad in the sense that it can be
seen as an agile OMD with adaptive regularization function Rt(x) = 1

2‖x−x1‖At . A major
difference is that the diagonal of At in the regularization function Rt are equal to the square
of the weights in Adagrad, namely D2

t , of the form

1

t

1

t−1
∑t

k=1∇fk(xk)2
i

.
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Theorem 11. ONS with ft µ-exp-concave and γ = 1
2 min{ 1

4GD , µ} and ε = 1/(γD)2

achieves a regret

RegretT ≤ (GD + 1/µ)(1 + d log T ) , T ≥ 2 .

Proof. We improve the gradient trick using Proposition 6

T∑
t=1

ft(xt)− ft(x∗) ≤
T∑
t=1

∇ft(xt)T (xt − x∗)−
γ

2

T∑
t=1

‖xt − x∗‖2∇ft(xt)∇ft(xt)T .

Using the recursion and the Pythagorean theorem (still valid) we get

‖xt+1 − x∗‖2At ≤ ‖yt+1 − x∗‖2At
≤ (yt+1 − x∗)TAt(yt+1 − x∗)T

≤ ‖xt − x∗‖2At −
1

γ2
‖∇ft(xt)‖2A−1

t
− 2

γ
∇ft(xt)T (xt − x∗) .

Thus we get

T∑
t=1

∇ft(xt)T (xt − x∗) ≤
γ

2

T∑
t=1

(‖xt − x∗‖2At − ‖xt+1 − x∗‖2At) +
2

γ

T∑
t=1

‖∇ft(xt)‖2A−1
t

≤γ
2

( T∑
t=2

(‖xt − x∗‖2At − ‖xt − x
∗‖2At−1

) + ‖x1 − x∗‖2A1

)
+

1

2γ

T∑
t=1

‖∇ft(xt)‖2A−1
t

≤γ
2

( T∑
t=2

‖xt − x∗‖2∇ft(xt)∇ft(xt)T + ‖x1 − x∗‖2A1

)
+

1

2γ

T∑
t=1

‖∇ft(xt)‖2A−1
t

.

We immediately derive

RegretT ≤
γ

2
‖x1 − x∗‖2A1−∇f1(x1)∇f1(x1)T +

1

2γ

T∑
t=1

‖∇ft(xt)‖2A−1
t
.

The first term in the upper bound is equal to ε‖x1 − x∗‖2 ≤ 1/γ2. We upper-bound the
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second term such as

T∑
t=1

‖∇ft(xt)‖2A−1
t

=

T∑
t=1

Tr(A−1
t ∇ft(xt)∇ft(xt)T )

=

T∑
t=1

Tr(A−1
t (At −At−1))

=

T∑
t=1

Tr(Id −A
−1/2
t At−1A

−1/2
t ))

=
T∑
t=1

d∑
i=1

(1− λi(A−1/2
t At−1A

−1/2
t ))

≤
T∑
t=1

d∑
i=1

− log(λi(A
−1/2
t At−1A

−1/2
t ))

≤
T∑
t=1

− log(|A−1/2
t At−1A

−1/2
t |)

=
T∑
t=1

log(|At|/|At−1|)

≤ log(|AT |/|A0|) .

We used several time the fact that At is symmetric positive for every t ≥ 0 and that
1−x ≤ − log x for x > 0. Since AT =

∑T
t=1∇ft(xt)∇ft(xt)T + εId then |AT | ≤ (TG2 + ε)d

and

|AT |/|A0| ≤ (1 + TG2/ε)d ≤ (1 + TG2γ2D2)d ≤ (1 + T/8)d ≤ T d

for any T ≥ 2. We get the bound

RegretT ≤
1

2γ
(1 + d log T ) ≤ (GD + 1/µ)(1 + d log T )

since 1/γ = 2 max(GD, 1/µ) ≤ 2(GD + 1/µ).

Each recursion of the ONS would require to invert a large ×d matrix At. Actually one
should avoid such inversion by considering the Sherman-Morrisson formula which provides
the recursion on A−1

t

A−1
t = (At−1 +∇ft(xt)∇f(xt)

T )−1 = A−1
t−1 −

A−1
t−1∇ft(xt)∇ft(xt)TAt−1

1 +∇ft(xt)TAt−1∇ft(xt)
.

Thus the recursion on At should be accompanied with one on A−1
t . Moreover the projection

arg minx∈K ‖x − yt+1‖2At is not explicit for At non diagonal (up to my knowledge). One
could approximate it with arg minx∈K ‖x − yt+1‖2Diag(At)

where Diag(At) is the diagonal
matrix extracted from At. Then the total cost of one recursion is O(d2).
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One can implement the ONS on MNIST

Algorithm 21: ONS for linear SVM
Parameters: Epoch T , radius z > 0, regularization parameter λ > 0 and γ > 0.
Initialization: Initial point x1 = y1 = 0, A0 = 1/γ2Id and A−1

0 = γ2Id.
Sample uniformly iid: (It)1≤t≤T from {1 ≤ i ≤ n}
For each iteration t = 1, . . . , T :
Iteration: Update

∇t = ∇`aIt ,bIt (xt) + λxt

At = At−1 +∇t∇Tt

A−1
t = A−1

t−1 −
A−1
t−1∇t∇Tt A

−1
t−1

1 +∇Tt A
−1
t−1∇t

yt+1 = xt −
1

γ
A−1
t ∇t ,

xt+1 = arg min
x∈B1(z)

‖x− yt+1‖2At , 1 ≤ i ≤ d .

Return: xT+1 =
1

T + 1

T+1∑
t=1

xt

The complexity of each recursion step is O(d2+P ) where P is the complexity of the non
explicit projection requiring a solver (at least O(d3)). Actually it is very complicated to
calibrate and the choice of γ is tricky. The performances are very similar to the regularized
SGD, both with regularization parameter taken as λ = 1/3. However the loss in speed is
a relative factor of 20.
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4.2.3 Natural gradient and EKF

For statistical settings such as binary classification (at, bt) iid, ONS might be useful for
statistical purposes. Indeed one updates a matrix A−1

t such that

1

T

T∑
t=1

A−1
t ≈ E[∇`(a,b)(x∗)∇`(a,b)(x∗)T ]−1

for T sufficiently large so that ∇fT (xT ) ≈ ∇fT (x∗). One recognize the variance of the
vector score associated to a model

(at, bt) ∼ c exp(−`a,b(x∗)) ,

where c > 0 is the normalizing constant c =
∫
Rd exp(−`a,1(x∗))da+

∫
Rd exp(−`a,−1(x∗))da.

For regular models we can have the identity

E[∇`(a,b)(x∗)∇`(a,b)(x∗)T ] = E[∇2`(a,b)(x
∗)] .

In such a case xT+1 might be a good approximation of the maximum likelihood estimator
and E[∇`(a,b)(x∗)∇`(a,b)(x∗)T ]−1 its associated asymptotic variance

√
T (xT+1 − x∗) ∼ N (0,E[∇`(a,b)(x∗)∇`(a,b)(x∗)T ]−1) .
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That ONS provides an estimator of the asymptotic variance 1
T

∑T
t=1A

−1
t is very useful for

instance for significancy testing.

The Online Natural Gradient introduced by Amari (1998) (or Stochastic Newton) ap-
proach replaces ∇t∇Tt in the recursion on A−1

t with the better (optimistic) approximation
of the variance of the score

E(a,b)∼c exp(−`a,b(xt)) [∇`(a,b)(xt)∇`(a,b)(xt)T ].

Such quantity is explicit in exponential family under its natural parametrization and then
the Online Natural Gradient algorithm coincides with the static Extended Kalman Filter.
Thus we are forced to consider the logistic model associated with the loss function

(b+ 1)xTa

2
− log(1 + ex

T a) .

Algorithm 22: EKF for linear SVM, Fahrmeir (1992)
Parameters: Epoch T .
Initialization: Initial point x1 = 0 and P0 = Id.
Sample uniformly iid: (It)1≤t≤T from {1 ≤ i ≤ n}
For each iteration t = 1, . . . , T :
Iteration: Update

p̂t =
ebItx

T
t aIt

1 + ebItx
T aIt

Pt = Pt−1 −
Pt−1aIta

T
It
Pt−1

1/(p̂t(1− p̂t)) + aTItPt−1aIt

xt+1 = xt + bIt(1− p̂t)PtaIt .

Return: xT+1

Note that the recursion depends heavily on the parameter p̂t which is the sigmoid
function applied to bItxTt aIt and corresponds to the probability of observing bIt from aIt
in the logistic model driven by xt. Thus one can also EKF as an explicit version of a
Recursive Bayesian algorithm. In such approach there is no need of the projection nor the
averaging step. The obtained accuracy is very close to the one of Adam and the relative
loss of speed is only of a relative factor of 10. The gain of relative speed of 1/2 compared
with ONS is because there is no projection. Optimal regret bounds have been derived for
EKF in such stochastic setting in De Vilmarest and Wintenberger (2021).
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Chapter 5
Exploration

5.1 Bandit Convex Optimization

When the information is not complete, we have a new setting called the bandit setting.
For instance, in extremely high dimension, even the inquiry of one gradient ∇ft(xt) ∈ Rd
might be too costly. Instead we use only one coordinate of the gradient ∇ft(xt)It ∈ R at
each step. The information about the gradient is incomplete and the problem is called a
Bandit Convex Optimization (BCO) problem.

Remark 11. This definition of Bandit Convex Optimization departs from the one of Hazan
(2019).

A general reduction from BCO setting to the OCO setting for any K is to replace
∇ft(xt) by the basic unbiased estimator ∇̂ft(xt) = d∇ft(xt)IteIt where {ei} are the ele-
ment of the canonical basis and It are iid uniform over 1, . . . , d. Indeed then

E[∇̂ft(xt)] =
d∑
j=1

d∇ft(xt)jejP(It = j) =
d∑
j=1

∇ft(xt)jej = ∇ft(xt) .

Thus BCO algorithms are given as stochastic OCO algorithms that explores randomly the
space at each recursion. Note that the rest of the OCO algorithm remains unchanged; for
instance one can think of an OMD in a randomized version predicting ∇ft(xt) thanks to
one coordinate

θt+1 = θt − η∇̂ft(xt) , xt+1 = ∇R∗(θt+1) .

It is important to notice that for any norm ‖ · ‖∗t so that ‖ej‖∗t = 1 one has

E
[
‖∇̂ft(xt)‖∗t

2]
=

d∑
j=1

‖d∇ft(xt)jej‖∗t
2
P(It = j) = d

d∑
j=1

∇ft(xt)2
j = dG2 ,

and it is independent of the dual norm. The OCO regret bounds obtained above for OMD
methods turn into a BCO regret bound of the form

E[RegretT ] ≤ E
[η∑T

t=1 ‖∇̂ft(xt)‖∗t
2

2
+
D2
R

η

]
≤ ηdTG2

2
+
D2
R

η
.
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Optimizing in η = DR/GR∗
√

2/(dT ), the randomized algorithm achieves a regret bound
deteriorated from the OCO setting by a factor at least

√
d. For instance, one can random-

ized the EG+/- and we get a regret bound on the unit `1-ball as

E[RegretT ] ≤ zG
√

2dT log d

by identifying DR = log(d). The online to batch conversion still holds on the stochastic
version of this algorithm called SREG+/- for which we get

E[hRT ] ≤ zdG∞
√

2 log d√
T

using G ≤
√
dG∞ and the loss is a factor d. It is worth noticing that the exploration

and exploitation are totally independent as the algorithm keeps exploring new directions
randomly at each time step.

Algorithm 23: SREG+/- for linear SVM
Parameters: Epoch T , radius z > 0.
Initialization: Initial point x1 = 0, weights w1 = 1/(2d) I1.
Sample uniformly iid: (It)1≤t≤T from {1 ≤ i ≤ n}
For each iteration t = 1, . . . , T :
Sample a direction: Jt ∈ {1, . . . d} uniformly
Iteration: Update

ηt = 1/
√
dt

wt,Jt ← exp(−ηtd∇`aIt ,bIt (xt)Jt)wt,Jt ,
wt,Jt+d ← exp(ηtd∇`aIt ,bIt (xt)Jt)wt,Jt+d,

wt+1 =
wt∑2d
i=1wt,i

xt+1,i = z(wt+1,i − wt+1,i+d) , 1 ≤ i ≤ d .

Return: xT+1 =
1

T + 1

T+1∑
t=1

xt
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The algorithm is stuck at the accuracy 0.1, the accuracy of the random guess (as there
is only 10% of label 1 in the dataset, digit 0). The algorithm explores at each round and
does not achieve a good exploration-exploitation trade-off.

5.2 Exp3 algorithm

Similarly as in the Expert Advice setting, at each round the algorithm assigns confident
weights xt ∈ Λ, pick randomly an expert It ∼ xt and incur the loss `t,It . However the
information of the algorithm is now limited to the loss `t,It but the regret is unchanged

E[RegretT (`)] =

T∑
t=1

Ext [`t]− min
1≤i≤d

T∑
t=1

`t,i .

At each round the algorithm can either explore and pick a new expert that has been never
played or exploit and pick an already chosen expert in order to learn its performances.
This is an exploration-exploitation trade-off called the Multi-Armed Bandit (MAB) prob-
lem. Note that in the bandit setting the experts are also called actions since one could also
argue that at each step only one expert is active.

A solution for obtaining the trade-off exploration-exploitation has been provided by
copying the EWA replacing `t in the exponential by some unbiased estimator. Considering
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`t,i for the coordinate which coincides with the chosen one i = It and 0 elsewhere, we get

Ext [`t,i I1i=It ] =

d∑
j=1

`t,i I1i=jP(It = j) = `t,ixt,i , 1 ≤ i ≤ d ,

which is a biased estimation of `t,i. Indeed the distribution of It makes the strategy biased in
favor of the experts with large confidence weights. In order to debiased the approximation
we consider instead ̂̀

t,i =
`t,i
xt,i

I1i=It .

Then we get an unbiased estimator of `t,i, indeed

Ext [
̂̀
t,i] =

d∑
j=1

`t,i
xt,i

I1i=jP(It = j) =
d∑
j=1

`t,i
xt,i

I1i=jxt,j = `t,i , 1 ≤ i ≤ d .

We obtain the Exp3 (Exponential weights for Exploration and Exploitation) algorithm

Algorithm 24: Exp3 algorithm (simple version), Auer et al. (2002)
Parameters: step-size η > 0.
Initialization: Initial prediction x1 = (1/d) I1.
For each recursion t ≥ 1:
Sample an expert: It ∼ xt uniformly
Predict as the It-th expert
Incur the average loss: `t,It
Observe: `t,It ∈ R
Recursion: Update

̂̀
t,i =

`t,i
xt,i

I1i=It , 1 ≤ i ≤ d

xt+1 =
exp(−η̂̀t)xt∑d

i=1 exp(−η̂̀t,i)xt,i .
We obtain the regret bound in the case of non-negative losses:

Theorem 12. In the MAB setting with ‖`t‖ ≤ G and `t ≥ 0, for η = G−1
√

2 log d/T we
obtain a regret bound for Exp3 as

E[RegretT (`)] ≤ G
√

2T log d .

Proof. We refine the previous analysis of EWA for random loss ̂̀t > 0 and η > 0. Recall
that now the Exp3 strategy xt itself is random (it depends on the past sampled coordinates
Is, s < t) in order to get the regret bound

E[RegretT (`)] = E[RegretT (f)] = E
[ T∑
t=1

xTt `t −min
x∈Λ

T∑
t=1

xT `t

]
for the linear loss ft(xt) = xTt `t. Because ∇̂ft(xt) = ̂̀

t = `t,It/xt,IteIt is an unbiased
estimator of `t we also have

E
[ T∑
t=1

xTt `t −min
x∈Λ

T∑
t=1

xT `t

]
= E

[ T∑
t=1

xTt
̂̀
t −min

x∈Λ

T∑
t=1

xT ̂̀t] = E[RegretT (∇̂f)] .
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We notice that Exp3 is an OMD algorithm using a stochastic unbiased approximation of
∇̂ft(xt) = ̂̀

t = `t,It/xt,IteIt . Thus we obtain an expected regret bounded of the form

E[RegretT (∇̂f)] ≤ E
[∑T

t=1 ‖η∇̂ft(xt)‖∗t
2

2η
+

log d

η

]
.

We cannot use anymore the rough bound ‖ · ‖∗t ≤ ‖ · ‖∞ because ‖∇̂ft(xt)‖∞ = `t,It/xt,It
is not bounded since xt,It can be as close to 0 as possible. Instead, we refine our bound on
the dual norm going back to its definition

1

2
‖η∇̂ft(xt)‖∗t

2 = BR∗(θt − η∇̂ft(xt), θt) ,

for R(x) = xT log(x) and θt = ∇R(yt). Then we make the important remark that the
update of Exp3 (and also EWA) can be written in the agile version as in Exercize 11,
namely

∇R(yt+1) = ∇R(xt)− η∇ft(xt) and xt+1 = arg min
x∈K

BR(x||yt+1) .

Thus one can replace θt with ∇R(xt). As in our setting we have ∇̂ft(xt) = ̂̀
t,i, we get

BR∗(θt − η̂̀t,i, θt) =BR∗(∇R(xt)− η̂̀t,i,∇R(xt))

=R∗(∇R(xt)− η̂̀t,i)−R∗(∇R(xt))

+ η∇R∗(∇R(xt))
T ̂̀

t,i.

Since R∗(x∗) = y∗Tx∗ −R(y∗) with ∇R(y∗) = x∗, we get

R∗(∇R(xt)) = xTt ∇R(xt)−R(xt) = xTt I1 ,

R∗(∇R(xt)− η̂̀t,i) = (xte
−η̂̀t,i)T (∇R(xt)− η̂̀t,i)−R(xte

−η̂̀t,i)
= (xte

−η̂̀t,i)T I1 .

Finally, using the relation ∇R∗(∇R(xt)) = xt we get

BR∗(θt − η̂̀t,i, θt) = xTt (e−η
̂̀
t,i − 1 + η̂̀t) .

Since exp(−x)− x− 1 ≤ x2/2 for any x > 0 we get the desired improved regret bound

RegretT (∇̂f) ≤ η

2

T∑
t=1

xTt
̂̀2
t +

log d

η
.

Note that the regret bound is still depending on the randomness of it via ̂̀t. We take its
expectation

E[RegretT (`)] ≤ E
[η

2

T∑
t=1

xTt Ext [
̂̀2
t ] +

log d

η

]
.

Thus we have to upper bound

Ext [
̂̀2
t,i] =

d∑
j=1

( `t,i
xt,i

)2
I1i=jP(It = j) =

`2t,i
xt,i
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and we obtain

E[RegretT (`)] ≤ η

2

T∑
t=1

d∑
i=1

`2t,i +
log d

η
≤ η

2
TG2 +

log d

η
,

and the desired result follows.

The regret bound is less accurate than in the complete information setting with a
relative loss of G that can be as large as

√
d. It is still optimal up to log terms in this

incomplete information setting since one has to explore the space. Exp3 can be improved
as the unbiased estimator ∇̂ft(xt) is not bounded since the confident weights xt,i can be
as small as possible. Note that on the contrary to the EWA algorithm, the recursion is not
invariant by a shift of the loss and the condition of non-negativity of the losses is necessary.

5.3 Exp2 algorithm for OCO on K = B1(z)

Another reduction of BCO to the OCO setting when K = B1(z) is the following one. We
first apply the gradient trick in order to minimize the linearized regret

E[RegretT (f)] = E
[ T∑
t=1

ft(xt)−min
x∈Λ

T∑
t=1

ft(x)
]

≤ E
[ T∑
t=1

∇ft(xt)T (xt − x∗)
]

= E[RegretT (∇f)]

by considering the linearized losses ft(x) = ∇ft(xt)Tx, x ∈ B1(z). One has to consider a
set of actions as At ∈ {e1, . . . , e2d} associated to confidence weights w ∈ Λ2d and consider
the stochastic approximation

±∇̂ft(xt) =
±∇ft(xt)TAt

wAt
At ,

where wAt is the confidence weights assigned to the action At. The approximation of the
signed gradient is still unbiased

E[±∇̂ft(xt)i] = Ew[±∇̂ft(xt)i] =

2d∑
j=1

±∇ft(xt)i
wi

I1i=jP(At = j) = ±∇ft(xt)i , 1 ≤ i ≤ 2d .

The weights are updated as in EWA on 2d experts and the prediction xt is provided by
xt,i = z(wt,i − wt,i+d) as in EG+/-. The same analysis as for Exp3 is conducted ex-
cept that the assumption of non-negativeness on the loss does not hold. This issue is
dropped by replacing the inequality exp(−x) − x − 1 ≤ x2/2 only valid for x > 0 by
the inequality exp(−x) − x − 1 ≤ x2 valid for any |x| ≤ 1 for a learning rate satisfy-
ing ‖η∇̂ft(xt)‖∞ ≤ 1. In order to do so it is necessary to bound ∇̂ft(xt) by another
trick, the introduction of an exploration factor γ so that the weights are lower bounded.
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Algorithm 25: Exp2 algorithm, Bubeck and Cesa-Bianchi (2012) (also called Exp3
for linear bandit, Lattimore and Szepesvári (2020))
Parameters: step-size η > 0.
Initialization: Initial prediction w′1 = w1 = (1/2d) I1 and x1 = 0. Exploration rate
γ = 2ηzdG∞.
For each recursion t ≥ 1:
Sample an action: At ∈ {e1, . . . , e2d} ∼ wt that determines a coordinate of
±∇̂ft(xt)
Predict xt
Incur the average loss: ft(xt)
Observe: ∇ft(xt)It ∈ R
Recursion: Update

w′t+1 =
exp(−η ± ∇̂ft(xt))w′t∑2d

i=1 exp(−η ± ∇̂ft(xt)i)w′t,i
,

wt+1 = (1− γ)w′t+1 + γw1 ,

xt+1 = z(w′t+1,i − w′t+1,i+d)1≤i≤d .

Theorem 13. In the BCO setting with ‖∇ft(x)‖∞ ≤ G∞ for any x ∈ K, choosing η =
(zG)−1

√
log(2d)/(2T ) and γ = 2ηzdG∞ we obtain a regret bound for Exp2 on B1(1) as

E[RegretT ] ≤ zG
√

2T log(2d) , T > 2d log(2d)(G∞/G)2 .

Proof. By definition of the weights and using Hölder inequality, we have

E[RegretT (∇f)] = E[RegretT (∇̂f)]

≤ E
[ T∑
t=1

∇̂ft(xt)
T

(xt − x∗)
]

≤ E
[ T∑
t=1

∇̂ft(xt)
T

(z(w′t+1,i − w′t+1,i+d)1≤i≤d − x∗)
]

≤ E
[ T∑
t=1

z ± ∇̂ft(xt)
T

(w′t − w∗)
]
,

where w∗ ∈ Λ2d by an application of Lemma 1. Because wt ≥ γ/(2d) and the specific
choice of γ we have ‖ηz ± ∇̂ft(xt)‖∞ ≤ 2ηzdG∞/γ ≤ 1. We extend to non positive losses
(here the estimated gradients) the previous bound on Exp3 at the cost of a factor 2 using
exp(−x)− x− 1 ≤ x2 valid for every |x| ≤ 1. We obtain

E
[
z

T∑
t=1

̂±∇ft(xt)
T

(wt − w∗)
]
≤ E

[
η

T∑
t=1

wTt Ewt

[
(z ± ∇̂ft(wt))2

]]
+

log(2d)

η
.

We estimate

wTt Ewt

[
± ∇̂ft(wt)

2]
≤ wTt

2d∑
i=1

(∇ft(xt)i
wt,i

)2
wt,iei = 2‖∇ft(xt)‖2 ≤ 2G2 ,
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and we obtain

E[RegretT ] ≤ 2ηT (zG)2 +
log(2d)

η
.

We obtain the desired result by the specific choice of η. Note that the restriction on T
comes from the fact that γ must be smaller than 1.

We provide a version of this algorithm for SVM on MNIST called Stochastic Bandit
EG+/-. The online to batch conversion still holds on SBEG+/- for which we get

E[hRT ] ≤ zG
√

2 log 2d√
T

.

In theory we gain a factor
√
d compared with SREG+/- thanks to the exploration that is

now adaptive to the OCO problem. However in practice the algorithm is also stuck at the
accuracy 0.1, even if the algorithm explores less and less depending on how fast it learns.

Algorithm 26: SBEG+/- for linear SVM
Parameters: Epoch T , radius z > 0.
Initialization: Initial point x1 = 0 and weights w1 = w′1 = 1/(2d) I1.
Sample uniformly iid: (It)1≤t≤T from {1 ≤ i ≤ n}
For each iteration t = 1, . . . , T :
Sample an action: At ∈ {e1, . . . , e2d} ∼ wt that determines a coordinate of
±∇`aIt ,bIt (xt)
Iteration: Update

ηt = 1/
√
dt

γt = min(1, dηt)

w′t,At ← exp(−ηt ±∇`aIt ,bIt (xt)At/wt,At)w
′
t,At ,

w′t+1 =
w′t∑2d
i=1w

′
t,i

wt+1 = (1− ηt)w′t +
ηt
2d

xt+1,i = z(w′t+1,i − w′t+1,i+d) , 1 ≤ i ≤ d .

Return: xT+1 =
1

T + 1

T+1∑
t=1

xt .
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