Stochastic Simulation and Monte Carlo Methods: Exercise Class 1.

Olivier Wintenberger: olivier.wintenberger@upmc.fr

Exercise 1. Prove that if $\mathbb{E}[Y^2] < \infty$ then

$$Var(Y) = Var(\mathbb{E}[Y \mid X]) + \mathbb{E}[Var(Y \mid X)]$$

where $\operatorname{Var}(Y \mid X) = \mathbb{E}[Y^2 \mid X] - \mathbb{E}[Y \mid X]^2$.

Exercise 2. Assume that $(X,Y) \sim \mathcal{N}_2(\mu,\Sigma)$ with $\mu = (\mu_1,\mu_2)^T$ and $\Sigma = \begin{pmatrix} \sigma_1^2 & \rho\sigma_1\sigma_2 \\ \rho\sigma_1\sigma_2 & \sigma_2^2 \end{pmatrix}$. What is the distribution of Y given $X \mid X = x, x \in \mathbb{R}$?

Exercise 3. Let $0 and <math>U, U_1, \dots, U_n \sim \mathcal{U}(0, 1)$ iid. Determine the distribution of $X = \mathbb{I}_{\{U \leq p\}}$ and $Y = \sum_{i=1}^n \mathbb{I}_{\{U_i \leq p\}}$.

Exercise 4.

- Let $X \sim \mathcal{E}xp(\lambda)$, calculate $\mathbb{P}(k-1 < X \leq k)$.
- Show that $X = -\log(U)/\lambda$ in distribution, where $U \sim \mathcal{U}(0,1)$.
- We recall that $Y \sim \mathcal{G}eo(p)$ iff $\mathbb{P}(Y = k) = p(1-p)^{k-1}$. Show that $Y = \lceil \log(U) / \log(1-p) \rceil$ in distribution.