Stochastic Simulation and Monte Carlo Methods: Exercise Class 2.

Olivier Wintenberger: olivier.wintenberger@upmc.fr

Exercise 1. The truncated normal distribution is the one of $N \sim \mathcal{N}(0,1)$ given that N > 0.

- Determine the density of this distribution,
- Compute the efficiency M of the reject sampling from the proposal $Y \sim \mathcal{E}xp(1)$.

Exercise 2. The Beta distribution is given thanks to its density

$$f_{\alpha,\beta}(x) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}, \qquad x \in [0,1].$$

Give a reject sampling of the distribution Beta(2,5) with proposal density $Y \sim \mathcal{U}(0,1)$.

Exercise 3. A random variable X has a $Gamma(\alpha, \beta)$ distribution, $\alpha > 0$ and $\beta > 0$, if it has the probability density function

$$f_{\alpha,\beta}(x) = \frac{x^{\alpha-1}e^{-\frac{x}{\beta}}}{\beta^{\alpha}\Gamma(\alpha)} \mathbb{1}_{x>0}.$$

Recall that $\forall \alpha > 0, \Gamma(\alpha) = \int_0^\infty t^{\alpha - 1} e^{-t} dt$.

- 1. Show that $\forall \alpha > 0, \Gamma(\alpha + 1) = \alpha \Gamma(\alpha)$. What is the value of $\Gamma(n), n \in \mathbb{N}^*$?
- 2. What is the other name of a $Gamma(1, \beta)$ distribution?
- 3. Let X_1 and X_2 be independent random variables with distribution $Gamma(\alpha_1, \beta)$ and $Gamma(\alpha_2, \beta)$, and $c \in \mathbb{R}^{+*}$.
 - (a) What is the distribution of $X_1 + X_2$?
 - (b) What is the distribution of cX_1 ?
- 4. Let U_1, \ldots, U_n be independent random variables with distribution $\mathcal{N}(0,1)$.
 - (a) Show that U_1^2 has a Gamma distribution and give its parameters. What is the other name of this distribution?
 - (b) Same questions for $U_1^2 + \cdots + U_n^2$.
- 5. Show that if E_1, \ldots, E_n, \ldots are iid $\mathcal{E}xp(\lambda)$ random variables, $\lambda > 0$, and $S_n = \sum_{i=1}^n E_i$ for any $n \in \mathbb{N}^*$, then $\inf\{n : S_{n+1} \ge 1\} \sim \mathcal{P}ois(\lambda)$. (This is a proposition of Chapter 3)

Exercise 4. Let (X,Y) be a standard gaussian vector in \mathbb{R}^2 . Show that its radial part $R = X^2 + Y^2$ and its angular part $\Theta = \arctan(Y/X)$ are independent and distributed as $\mathcal{E}xp(1/2)$ and $\mathcal{U}nif(0,2\pi)$.

Exercise 5. Show that the mixing distribution such that $X \mid Y \sim \mathcal{P}oisson(Y)$ with mixing variable $Y \sim \mathcal{G}amma(n, \lambda)$ with $n \geq 1$, $\lambda > 0$ is a negative binomial distribution of the form

$$\mathbb{P}(X=k) = \binom{k+n-1}{k} p^n (1-p)^k \qquad k \ge 0.$$

Determine p in function of λ and interpret X as the number of trials necessary for obtaining n successes in a specific experiment.

Exercise 6. Assume that $Z \sim \mathcal{B}(p), \ p \in (0,1), \ X|Z = 0 \sim \mathcal{N}(\mu_0, \sigma_0^2)$ and $X|Z = 1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$ for $\mu_1, \mu_2 \in \mathbb{R}$ and $\sigma_1^2, \sigma_2^2 > 0$.

- 1. What is the name of the distribution of X? Is it discrete or continuous?
- 2. Compute $\mathbb{E}[X|Z]$ and $\mathbb{E}[X]$. Calculate the parameter $p \in (0,1)$ given μ_1, μ_2 and $\mathbb{E}[X]$.
- 3. Compute Var(X) and comment.