Stochastic Modeling: Exercise Class 3.

Olivier Wintenberger: olivier.wintenberger@upmc.fr

Exercise 1. Assume one wants to simulate the uniform distribution over the unit ball B_1 in \mathbb{R}^d .

- Show that d random variables $U_1, \ldots, U_d \sim \mathcal{U}(0,1)$ iid follows the uniform distribution over $[0,1]^d$.
- Deduce a uniform random vector over the hyper-rectangle $[-1,1]^d$ from U_1,\ldots,U_d .
- Show that the rejection step in order to simulate the uniform distribution over B_1 has efficiency $M = 2^d/|B_1|$.
- Describe the behavior of M with respect to the dimension d.

Exercise 2. Give the constants a, b_- and b_+ for the ratio algorithm for the following densities h (up to constants)

- Cauchy $h(x) = \frac{1}{1+x^2}$,
- Exponential $h(x) = e^{-x}, x > 0$,
- Gaussian $h(x) = e^{-x^2/2}$,

and for each case compute the efficiency of the associated rejection step.

Exercise 3. Consider the integral $I = \int_{\Delta} h(\mathbf{x}) d\mathbf{x}$ where $\Delta \subset \mathbb{R}^d$ and $|\Delta| < \infty$.

- Show that from d random variables U_1, \ldots, U_d one can simulate a uniform distribution U over a hyper-rectangle R so that $\Delta \subseteq R$.
- Show that $I_n = \frac{1}{n} \sum_{i=1}^n g(\mathbf{U}_i)$ where $g(\mathbf{x}) = |R| h(\mathbf{x}) \mathbb{I}_{\{\mathbf{x} \in \Delta\}}$ is an unbiased approximation of I.
- Decompose the variance $\text{Var}(g(\mathbf{U}))$ into two terms, one increasing with the efficiency M of the rejection step and another one independent of $M = |R|/|\Delta|$.
- We assume that h is positive and bounded over Δ . Consider the set

$$\mathcal{D} = \left\{ (\mathbf{x}, y) \in \mathbb{R}^{d+1} : \mathbf{x} \in \Delta, 0 \le y \le h(\mathbf{x}) \right\}$$

and the random variable $Y = \mathbb{I}_{\mathbf{V} \in \mathcal{D}}$ where $\mathbf{V} \sim \mathcal{U}(R \times [0, \sup_{\Delta} h])$. Determine the distribution of Y.

- Show that $I'_n = \frac{|R| \sup_{\Delta} h}{n} \sum_{i=1}^n Y_i$ is an alternative unbiased approximation of $I, Y_1, \ldots Y_n$ iid versions of Y.
- Compute the variance of Y.
- Compare the variances associated to I_n and I'_n . Which method has the best accuracy?