Stochastic Modeling: Exercise Class 4.

Olivier Wintenberger: olivier.wintenberger@upmc.fr

Exercise 1. Consider $I = \int_0^2 x^2 dx$ and 2 different proposals with densities $f_X(x) = 0.5 \mathbb{I}_{[0,2]}(x)$ and $f_Y(y) = 0.5y \mathbb{I}_{[0,2]}(y)$.

- Calculate I.
- Compute two MC approximations of I of the form $n^{-1} \sum_{i=1}^{n} g_X(X_i)$ and $n^{-1} \sum_{i=1}^{n} g_Y(Y_i)$ for $X_1, \ldots, X_n \sim f_X$ and $Y_1, \ldots, Y_n \sim f_Y$.
- Compute the corresponding variances $Var(g_X(X))$ and $Var(g_Y(Y))$ and compare the accuracies of the two approximations.

Exercise 2. Consider $I = \int_0^1 \frac{1}{1+x} dx$

- \bullet Calculate I.
- Give a MC approximation using the proposal $U \sim Unif(0,1)$.
- Propose an antithetic approximation.
- Discuss the gain in variance.
- Compute the optimal control variate $c^*(1+U)$.
- Discuss the gain of variance and compare it with the previous one.
- Why cannot we combine the two accelerations?

Exercise 3. Consider $I = \int_0^{10} \exp(-2|x-5|) dx$.

- Calculate I.
- Provide the crude MC approximation.
- Compute its variance.
- Consider an IS approximation with proposal $X \sim \mathcal{N}(5,1)$.
- Compute its weights.
- Discuss the variance gain.