Time Series Analysis: TD3. Olivier Wintenberger: olivier.wintenberger@upmc.fr **Exercise 1.** Show that a MA(q) time series (X_t) is stationary as soon as (Z_t) is. **Exercise 2.** Consider a WN(σ^2) (Z_t) and the MA(1) (X_t) defined as $$X_t = Z_t + \theta Z_{t-1}, \qquad t \in \mathbb{Z}.$$ Assume that $|\theta| > 1$ and consider the process $$W_t = \sum_{j=0}^{\infty} (-\theta)^{-j} X_{t-j}, \qquad t \in \mathbb{Z}.$$ - 1. Compute $\gamma_X(h)$, $h \ge 0$, the autocovariance function of (X_t) . - 2. Show that W_t exists in \mathbb{L}^2 . - 3. Express $Var(W_0)$ in terms of θ and σ^2 . - 4. Show that (W_t) is WN. - 5. Check that we have the relation $$X_t = W_t + \frac{1}{\theta} W_{t-1}, \qquad t \in \mathbb{Z}.$$ Exercise 3. This exercise is using the properties of the projection in order to get an efficient algorithm for determining the best linear prediction $\Pi_t(X_{t+1})$ and the associated risk R_t^L . Consider a WN(σ^2) (Z_t) and the MA(1) (X_t) defined as $$X_t = Z_t + \theta Z_{t-1}, \qquad t \in \mathbb{Z},$$ with $|\theta| < 1$. - 1. Express the coefficients (φ_j) of the causal solution $X_t = \sum_{j=1}^{\infty} \varphi_j X_{t-j} + Z_t$ of the MA(1) model in term of θ . - 2. Deduce $\Pi_{\infty}(X_{n+1})$ and the associated risk R_{∞}^{L} . - 3. Show that $\Pi_n(X_{n+2}) = 0$ and $\mathbb{E}[X_{n+1}\Pi_{n-1}(X_n)] = 0$. 4. Deduce from the projection decomposition the recursive formula called $$\Pi_n(X_{n+1}) = \frac{\sigma^2 \theta}{R_n^L} (X_n - \Pi_{n-1}(X_n)), \qquad n \ge 1.$$ 5. Deduce the recursive formula $R_{n+1}^L = \sigma^2(1+\theta^2) - \sigma^4\theta^2/R_n^L$ for $n \ge 1$ and the innovation algorithm that update $(\Pi_n(X_{n+1}), R_n^L)$ recursively.